LineValueSampler

!syntax description /VectorPostprocessors/LineValueSampler

Description LineValueSampler samples the given variables/auxvariables at equally spaced points between the start and end points of a user provided line segment. The sampled points and the values are written to a csv file at every time step. The sorting order of the points can be changed using the sort_by parameter which takes x, y, z or id (increasing distance from start point) as input.

LineValueSampler could also be used as an UserObject with the MultiAppUserObjectTransfer to transfer values to AuxVariables in the master or sub application. When using the LineValueSampler with the MultiAppUserObjectTransfer, an error is generated if more than one variable is supplied as input to the LineValueSampler as the transfer currently works only with one variable. Also, when calculating the value of the UserObject (LineValueSampler in this case) at a given point, the point is first projected onto the user defined line segment and the interpolated value at the projected point is returned as output. If the projected point falls outside the line segment, infinity is returned as output.

If the variable to be plotted needs to be scaled, this can be done by supplying a postprocessor. Caution should be used to make sure that the postprocessor is being evaluated in such a way that its value will not be lagged when being called by LineValueSampler.

Input Parameters

  • num_pointsThe number of points to sample along the line

    C++ Type:unsigned int

    Options:

    Description:The number of points to sample along the line

  • end_pointThe ending of the line

    C++ Type:libMesh::Point

    Options:

    Description:The ending of the line

  • start_pointThe beginning of the line

    C++ Type:libMesh::Point

    Options:

    Description:The beginning of the line

  • variableThe names of the variables that this VectorPostprocessor operates on

    C++ Type:std::vector

    Options:

    Description:The names of the variables that this VectorPostprocessor operates on

  • sort_byWhat to sort the samples by

    C++ Type:MooseEnum

    Options:x y z id

    Description:What to sort the samples by

Required Parameters

  • scaling1The postprocessor that the variables are multiplied with

    Default:1

    C++ Type:PostprocessorName

    Options:

    Description:The postprocessor that the variables are multiplied with

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE INITIAL LINEAR NONLINEAR TIMESTEP_END TIMESTEP_BEGIN FINAL CUSTOM

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.

  • _is_broadcastTrue

    Default:True

    C++ Type:bool

    Options:

  • contains_complete_historyFalseSet this flag to indicate that the values in all vectors declared by this VPP represent a time history (e.g. with each invocation, new values are added and old values are never removed). This changes the output so that only a single file is output and updated with each invocation

    Default:False

    C++ Type:bool

    Options:

    Description:Set this flag to indicate that the values in all vectors declared by this VPP represent a time history (e.g. with each invocation, new values are added and old values are never removed). This changes the output so that only a single file is output and updated with each invocation

Optional Parameters

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Options:

    Description:Set the enabled status of the MooseObject.

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Options:

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

  • outputsVector of output names were you would like to restrict the output of variables(s) associated with this object

    C++ Type:std::vector

    Options:

    Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector

    Options:

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Options:

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • force_preauxFalseForces the GeneralUserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Options:

    Description:Forces the GeneralUserObject to be executed in PREAUX

Advanced Parameters

Input Files

References