DomainIntegralTopologicalQFunction

Determines if a node is within the ring of the crack front defintion; this object is normally created by the DomainIntegralAction.

Description

This object is used to compute the value of the function used in the computation of fracture domain integrals, as described in FractureIntegrals. This form of the function is based on the mesh topology. Rings of elements in layers expanding from the crack front are formed, and the function varies from 1 to 0 from the inside nodes to the outside nodes of a given ring.

This object is not typically directly defined by a user, but is defined using the DomainIntegralAction block. Also, this object is used only for output purposes for debugging models, as the actual value of the function used in the computation is computed by the fracture domain integral Postprocessor objects.

Input Parameters

  • crack_front_definitionThe CrackFrontDefinition user object name

    C++ Type:UserObjectName

    Controllable:No

    Description:The CrackFrontDefinition user object name

  • ring_indexThe ring of elements that defines the integration domain

    C++ Type:unsigned int

    Controllable:No

    Description:The ring of elements that defines the integration domain

  • variableThe name of the variable that this object applies to

    C++ Type:AuxVariableName

    Controllable:No

    Description:The name of the variable that this object applies to

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh

  • crack_front_point_indexThe index of the point on the crack front corresponding to this q function

    C++ Type:unsigned int

    Controllable:No

    Description:The index of the point on the crack front corresponding to this q function

  • execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, PRE_DISPLACE.

    Default:LINEAR TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, PRE_DISPLACE

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, PRE_DISPLACE.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters