www.mooseframework.org
Functions
RankThreeTensor.C File Reference

Go to the source code of this file.

Functions

template<>
void mooseSetToZero< RankThreeTensor > (RankThreeTensor &v)
 Helper function template specialization to set an object to zero. More...
 
template<>
void dataStore (std::ostream &stream, RankThreeTensor &rtht, void *context)
 
template<>
void dataLoad (std::istream &stream, RankThreeTensor &rtht, void *context)
 
RankTwoTensor operator* (const RealVectorValue &p, const RankThreeTensor &b)
 r=v*A where r is rank 2, v is vector and A is rank 3 More...
 

Function Documentation

template<>
void dataLoad ( std::istream &  stream,
RankThreeTensor rtht,
void *  context 
)

Definition at line 41 of file RankThreeTensor.C.

42 {
43  dataLoad(stream, rtht._vals, context);
44 }
Real _vals[N3]
The values of the rank-three tensor stored by index=((i * LIBMESH_DIM + j) * LIBMESH_DIM + k) ...
void dataLoad(std::istream &stream, RankThreeTensor &rtht, void *context)
template<>
void dataStore ( std::ostream &  stream,
RankThreeTensor rtht,
void *  context 
)

Definition at line 34 of file RankThreeTensor.C.

35 {
36  dataStore(stream, rtht._vals, context);
37 }
void dataStore(std::ostream &stream, RankThreeTensor &rtht, void *context)
Real _vals[N3]
The values of the rank-three tensor stored by index=((i * LIBMESH_DIM + j) * LIBMESH_DIM + k) ...
template<>
void mooseSetToZero< RankThreeTensor > ( RankThreeTensor v)

Helper function template specialization to set an object to zero.

Needed by DerivativeMaterialInterface

Definition at line 27 of file RankThreeTensor.C.

28 {
29  v.zero();
30 }
void zero()
Zeros out the tensor.
RankTwoTensor operator* ( const RealVectorValue &  p,
const RankThreeTensor b 
)

r=v*A where r is rank 2, v is vector and A is rank 3

Definition at line 344 of file RankThreeTensor.C.

345 {
346  RankTwoTensor result;
347 
348  for (unsigned int i = 0; i < LIBMESH_DIM; ++i)
349  for (unsigned int j = 0; j < LIBMESH_DIM; ++j)
350  for (unsigned int k = 0; k < LIBMESH_DIM; ++k)
351  result(i, j) += p(k) * b(k, i, j);
352 
353  return result;
354 }
RankTwoTensor is designed to handle the Stress or Strain Tensor for a fully anisotropic material...
Definition: RankTwoTensor.h:45