www.mooseframework.org
Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | List of all members
TensorMechanicsPlasticWeakPlaneShear Class Reference

Rate-independent associative weak-plane tensile failure with hardening/softening. More...

#include <TensorMechanicsPlasticWeakPlaneShear.h>

Inheritance diagram for TensorMechanicsPlasticWeakPlaneShear:
[legend]

Public Member Functions

 TensorMechanicsPlasticWeakPlaneShear (const InputParameters &parameters)
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const override
 The active yield surfaces, given a vector of yield functions. More...
 
virtual std::string modelName () const override
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual bool useCustomReturnMap () const
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
 Calculates a custom consistent tangent operator. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
RankTwoTensor df_dsig (const RankTwoTensor &stress, Real _tan_phi_or_psi) const
 Function that's used in dyieldFunction_dstress and flowPotential. More...
 
virtual Real smooth (const RankTwoTensor &stress) const
 returns the 'a' parameter - see doco for _tip_scheme More...
 
virtual Real dsmooth (const RankTwoTensor &stress) const
 returns the da/dstress(2,2) - see doco for _tip_scheme More...
 
virtual Real d2smooth (const RankTwoTensor &stress) const
 returns the d^2a/dstress(2,2)^2 - see doco for _tip_scheme More...
 
virtual Real cohesion (const Real internal_param) const
 cohesion as a function of internal parameter More...
 
virtual Real dcohesion (const Real internal_param) const
 d(cohesion)/d(internal_param) More...
 
virtual Real tan_phi (const Real internal_param) const
 tan_phi as a function of internal parameter More...
 
virtual Real dtan_phi (const Real internal_param) const
 d(tan_phi)/d(internal_param); More...
 
virtual Real tan_psi (const Real internal_param) const
 tan_psi as a function of internal parameter More...
 
virtual Real dtan_psi (const Real internal_param) const
 d(tan_psi)/d(internal_param); More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_cohesion
 Hardening model for cohesion. More...
 
const TensorMechanicsHardeningModel_tan_phi
 Hardening model for tan(phi) More...
 
const TensorMechanicsHardeningModel_tan_psi
 Hardening model for tan(psi) More...
 
MooseEnum _tip_scheme
 The yield function is modified to f = sqrt(s_xz^2 + s_yz^2 + a) + s_zz*_tan_phi - _cohesion where "a" depends on the tip_scheme. More...
 
Real _small_smoother2
 smoothing parameter for the cone's tip - see doco for _tip_scheme More...
 
Real _cap_start
 smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme More...
 
Real _cap_rate
 dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme More...
 

Detailed Description

Rate-independent associative weak-plane tensile failure with hardening/softening.

The cone's tip is smoothed.

Definition at line 22 of file TensorMechanicsPlasticWeakPlaneShear.h.

Constructor & Destructor Documentation

TensorMechanicsPlasticWeakPlaneShear::TensorMechanicsPlasticWeakPlaneShear ( const InputParameters &  parameters)

Definition at line 55 of file TensorMechanicsPlasticWeakPlaneShear.C.

57  : TensorMechanicsPlasticModel(parameters),
58  _cohesion(getUserObject<TensorMechanicsHardeningModel>("cohesion")),
59  _tan_phi(getUserObject<TensorMechanicsHardeningModel>("tan_friction_angle")),
60  _tan_psi(getUserObject<TensorMechanicsHardeningModel>("tan_dilation_angle")),
61  _tip_scheme(getParam<MooseEnum>("tip_scheme")),
62  _small_smoother2(Utility::pow<2>(getParam<Real>("smoother"))),
63  _cap_start(getParam<Real>("cap_start")),
64  _cap_rate(getParam<Real>("cap_rate"))
65 {
66  // With arbitary UserObjects, it is impossible to check everything, and
67  // I think this is the best I can do
68  if (tan_phi(0) < 0 || tan_psi(0) < 0)
69  mooseError("Weak-Plane-Shear friction and dilation angles must lie in [0, Pi/2]");
70  if (tan_phi(0) < tan_psi(0))
71  mooseError(
72  "Weak-Plane-Shear friction angle must not be less than Weak-Plane-Shear dilation angle");
73  if (cohesion(0) < 0)
74  mooseError("Weak-Plane-Shear cohesion must not be negative");
75 }
MooseEnum _tip_scheme
The yield function is modified to f = sqrt(s_xz^2 + s_yz^2 + a) + s_zz*_tan_phi - _cohesion where "a"...
TensorMechanicsPlasticModel(const InputParameters &parameters)
virtual Real tan_phi(const Real internal_param) const
tan_phi as a function of internal parameter
const TensorMechanicsHardeningModel & _tan_phi
Hardening model for tan(phi)
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
virtual Real cohesion(const Real internal_param) const
cohesion as a function of internal parameter
const TensorMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
Real _small_smoother2
smoothing parameter for the cone&#39;s tip - see doco for _tip_scheme
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
virtual Real tan_psi(const Real internal_param) const
tan_psi as a function of internal parameter
const TensorMechanicsHardeningModel & _tan_psi
Hardening model for tan(psi)

Member Function Documentation

void TensorMechanicsPlasticWeakPlaneShear::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  Eijkl,
std::vector< bool > &  act,
RankTwoTensor &  returned_stress 
) const
overridevirtual

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 271 of file TensorMechanicsPlasticWeakPlaneShear.C.

277 {
278  act.assign(1, false);
279  returned_stress = stress;
280 
281  if (f[0] <= _f_tol)
282  return;
283 
284  // in the following i will derive returned_stress for the case smoother=0
285 
286  Real tanpsi = tan_psi(intnl);
287  Real tanphi = tan_phi(intnl);
288 
289  // norm is the normal to the yield surface
290  // with f having psi (dilation angle) instead of phi:
291  // norm(0) = df/dsig(2,0) = df/dsig(0,2)
292  // norm(1) = df/dsig(2,1) = df/dsig(1,2)
293  // norm(2) = df/dsig(2,2)
294  std::vector<Real> norm(3, 0.0);
295  const Real tau = std::sqrt(Utility::pow<2>((stress(0, 2) + stress(2, 0)) / 2.0) +
296  Utility::pow<2>((stress(1, 2) + stress(2, 1)) / 2.0));
297  if (tau > 0.0)
298  {
299  norm[0] = 0.25 * (stress(0, 2) + stress(2, 0)) / tau;
300  norm[1] = 0.25 * (stress(1, 2) + stress(2, 1)) / tau;
301  }
302  else
303  {
304  returned_stress(2, 2) = cohesion(intnl) / tanphi;
305  act[0] = true;
306  return;
307  }
308  norm[2] = tanpsi;
309 
310  // to get the flow directions, we have to multiply norm by Eijkl.
311  // I assume that E(0,2,0,2) = E(1,2,1,2), and E(2,2,0,2) = 0 = E(0,2,1,2), etc
312  // with the usual symmetry. This makes finding the returned_stress
313  // much easier.
314  // returned_stress = stress - alpha*n
315  // where alpha is chosen so that f = 0
316  Real alpha = f[0] / (Eijkl(0, 2, 0, 2) + Eijkl(2, 2, 2, 2) * tanpsi * tanphi);
317 
318  if (1 - alpha * Eijkl(0, 2, 0, 2) / tau >= 0)
319  {
320  // returning to the "surface" of the cone
321  returned_stress(2, 2) = stress(2, 2) - alpha * Eijkl(2, 2, 2, 2) * norm[2];
322  returned_stress(0, 2) = returned_stress(2, 0) =
323  stress(0, 2) - alpha * 2.0 * Eijkl(0, 2, 0, 2) * norm[0];
324  returned_stress(1, 2) = returned_stress(2, 1) =
325  stress(1, 2) - alpha * 2.0 * Eijkl(1, 2, 1, 2) * norm[1];
326  }
327  else
328  {
329  // returning to the "tip" of the cone
330  returned_stress(2, 2) = cohesion(intnl) / tanphi;
331  returned_stress(0, 2) = returned_stress(2, 0) = returned_stress(1, 2) = returned_stress(2, 1) =
332  0.0;
333  }
334  returned_stress(0, 0) =
335  stress(0, 0) - Eijkl(0, 0, 2, 2) * (stress(2, 2) - returned_stress(2, 2)) / Eijkl(2, 2, 2, 2);
336  returned_stress(1, 1) =
337  stress(1, 1) - Eijkl(1, 1, 2, 2) * (stress(2, 2) - returned_stress(2, 2)) / Eijkl(2, 2, 2, 2);
338 
339  act[0] = true;
340 }
virtual Real tan_phi(const Real internal_param) const
tan_phi as a function of internal parameter
virtual Real cohesion(const Real internal_param) const
cohesion as a function of internal parameter
const Real _f_tol
Tolerance on yield function.
virtual Real tan_psi(const Real internal_param) const
tan_psi as a function of internal parameter
Real TensorMechanicsPlasticWeakPlaneShear::cohesion ( const Real  internal_param) const
protectedvirtual

cohesion as a function of internal parameter

Definition at line 178 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by activeConstraints(), TensorMechanicsPlasticWeakPlaneShear(), and yieldFunction().

179 {
180  return _cohesion.value(internal_param);
181 }
const TensorMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
virtual Real value(Real intnl) const
RankFourTensor TensorMechanicsPlasticModel::consistentTangentOperator ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
virtualinherited

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 249 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticJ2::consistentTangentOperator(), TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), TensorMechanicsPlasticMeanCapTC::consistentTangentOperator(), and TensorMechanicsPlasticTensileMulti::consistentTangentOperator().

256 {
257  return E_ijkl;
258 }
Real TensorMechanicsPlasticWeakPlaneShear::d2smooth ( const RankTwoTensor &  stress) const
protectedvirtual

returns the d^2a/dstress(2,2)^2 - see doco for _tip_scheme

Definition at line 249 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by dflowPotential_dstress().

250 {
251  Real d2smoother2 = 0;
252  if (_tip_scheme == "cap")
253  {
254  Real x = stress(2, 2) - _cap_start;
255  Real p = 0;
256  Real dp_dx = 0;
257  Real d2p_dx2 = 0;
258  if (x > 0)
259  {
260  const Real exp_cap_rate_x = std::exp(-_cap_rate * x);
261  p = x * (1.0 - exp_cap_rate_x);
262  dp_dx = (1.0 - exp_cap_rate_x) + x * _cap_rate * exp_cap_rate_x;
263  d2p_dx2 = 2.0 * _cap_rate * exp_cap_rate_x - x * Utility::pow<2>(_cap_rate) * exp_cap_rate_x;
264  }
265  d2smoother2 += 2.0 * Utility::pow<2>(dp_dx) + 2.0 * p * d2p_dx2;
266  }
267  return d2smoother2;
268 }
MooseEnum _tip_scheme
The yield function is modified to f = sqrt(s_xz^2 + s_yz^2 + a) + s_zz*_tan_phi - _cohesion where "a"...
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
Real TensorMechanicsPlasticWeakPlaneShear::dcohesion ( const Real  internal_param) const
protectedvirtual

d(cohesion)/d(internal_param)

Definition at line 184 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by dyieldFunction_dintnl().

185 {
186  return _cohesion.derivative(internal_param);
187 }
virtual Real derivative(Real intnl) const
const TensorMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
RankTwoTensor TensorMechanicsPlasticWeakPlaneShear::df_dsig ( const RankTwoTensor &  stress,
Real  _tan_phi_or_psi 
) const
protected

Function that's used in dyieldFunction_dstress and flowPotential.

Definition at line 87 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by dyieldFunction_dstress(), and flowPotential().

89 {
90  RankTwoTensor deriv; // the constructor zeroes this
91 
92  Real tau = std::sqrt(Utility::pow<2>((stress(0, 2) + stress(2, 0)) / 2.0) +
93  Utility::pow<2>((stress(1, 2) + stress(2, 1)) / 2.0) + smooth(stress));
94  // note that i explicitly symmeterise in preparation for Cosserat
95  if (tau == 0.0)
96  {
97  // the derivative is not defined here, but i want to set it nonzero
98  // because otherwise the return direction might be too crazy
99  deriv(0, 2) = deriv(2, 0) = 0.5;
100  deriv(1, 2) = deriv(2, 1) = 0.5;
101  }
102  else
103  {
104  deriv(0, 2) = deriv(2, 0) = 0.25 * (stress(0, 2) + stress(2, 0)) / tau;
105  deriv(1, 2) = deriv(2, 1) = 0.25 * (stress(1, 2) + stress(2, 1)) / tau;
106  deriv(2, 2) = 0.5 * dsmooth(stress) / tau;
107  }
108  deriv(2, 2) += _tan_phi_or_psi;
109  return deriv;
110 }
virtual Real dsmooth(const RankTwoTensor &stress) const
returns the da/dstress(2,2) - see doco for _tip_scheme
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme
RankTwoTensor TensorMechanicsPlasticWeakPlaneShear::dflowPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 169 of file TensorMechanicsPlasticWeakPlaneShear.C.

171 {
172  RankTwoTensor dr_dintnl;
173  dr_dintnl(2, 2) = dtan_psi(intnl);
174  return dr_dintnl;
175 }
virtual Real dtan_psi(const Real internal_param) const
d(tan_psi)/d(internal_param);
void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 134 of file TensorMechanicsPlasticModel.C.

137 {
138  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
139 }
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.
RankFourTensor TensorMechanicsPlasticWeakPlaneShear::dflowPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 133 of file TensorMechanicsPlasticWeakPlaneShear.C.

135 {
136  RankFourTensor dr_dstress;
137  Real tau = std::sqrt(Utility::pow<2>((stress(0, 2) + stress(2, 0)) / 2.0) +
138  Utility::pow<2>((stress(1, 2) + stress(2, 1)) / 2.0) + smooth(stress));
139  if (tau == 0.0)
140  return dr_dstress;
141 
142  // note that i explicitly symmeterise
143  RankTwoTensor dtau;
144  dtau(0, 2) = dtau(2, 0) = 0.25 * (stress(0, 2) + stress(2, 0)) / tau;
145  dtau(1, 2) = dtau(2, 1) = 0.25 * (stress(1, 2) + stress(2, 1)) / tau;
146  dtau(2, 2) = 0.5 * dsmooth(stress) / tau;
147 
148  for (unsigned i = 0; i < 3; ++i)
149  for (unsigned j = 0; j < 3; ++j)
150  for (unsigned k = 0; k < 3; ++k)
151  for (unsigned l = 0; l < 3; ++l)
152  dr_dstress(i, j, k, l) = -dtau(i, j) * dtau(k, l) / tau;
153 
154  // note that i explicitly symmeterise
155  dr_dstress(0, 2, 0, 2) += 0.25 / tau;
156  dr_dstress(0, 2, 2, 0) += 0.25 / tau;
157  dr_dstress(2, 0, 0, 2) += 0.25 / tau;
158  dr_dstress(2, 0, 2, 0) += 0.25 / tau;
159  dr_dstress(1, 2, 1, 2) += 0.25 / tau;
160  dr_dstress(1, 2, 2, 1) += 0.25 / tau;
161  dr_dstress(2, 1, 1, 2) += 0.25 / tau;
162  dr_dstress(2, 1, 2, 1) += 0.25 / tau;
163  dr_dstress(2, 2, 2, 2) += 0.5 * d2smooth(stress) / tau;
164 
165  return dr_dstress;
166 }
virtual Real dsmooth(const RankTwoTensor &stress) const
returns the da/dstress(2,2) - see doco for _tip_scheme
virtual Real d2smooth(const RankTwoTensor &stress) const
returns the d^2a/dstress(2,2)^2 - see doco for _tip_scheme
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme
void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 120 of file TensorMechanicsPlasticModel.C.

123 {
124  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
125 }
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.
Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 169 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dintnlV().

171 {
172  return 0.0;
173 }
void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 175 of file TensorMechanicsPlasticModel.C.

178 {
179  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
180 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter. ...
RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 155 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dstressV().

157 {
158  return RankTwoTensor();
159 }
void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 161 of file TensorMechanicsPlasticModel.C.

164 {
165  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
166 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.
Real TensorMechanicsPlasticWeakPlaneShear::dsmooth ( const RankTwoTensor &  stress) const
protectedvirtual

returns the da/dstress(2,2) - see doco for _tip_scheme

Definition at line 229 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by df_dsig(), and dflowPotential_dstress().

230 {
231  Real dsmoother2 = 0;
232  if (_tip_scheme == "cap")
233  {
234  Real x = stress(2, 2) - _cap_start;
235  Real p = 0;
236  Real dp_dx = 0;
237  if (x > 0)
238  {
239  const Real exp_cap_rate_x = std::exp(-_cap_rate * x);
240  p = x * (1 - exp_cap_rate_x);
241  dp_dx = (1 - exp_cap_rate_x) + x * _cap_rate * exp_cap_rate_x;
242  }
243  dsmoother2 += 2 * p * dp_dx;
244  }
245  return dsmoother2;
246 }
MooseEnum _tip_scheme
The yield function is modified to f = sqrt(s_xz^2 + s_yz^2 + a) + s_zz*_tan_phi - _cohesion where "a"...
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
Real TensorMechanicsPlasticWeakPlaneShear::dtan_phi ( const Real  internal_param) const
protectedvirtual

d(tan_phi)/d(internal_param);

Definition at line 196 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by dyieldFunction_dintnl().

197 {
198  return _tan_phi.derivative(internal_param);
199 }
const TensorMechanicsHardeningModel & _tan_phi
Hardening model for tan(phi)
virtual Real derivative(Real intnl) const
Real TensorMechanicsPlasticWeakPlaneShear::dtan_psi ( const Real  internal_param) const
protectedvirtual

d(tan_psi)/d(internal_param);

Definition at line 208 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by dflowPotential_dintnl().

209 {
210  return _tan_psi.derivative(internal_param);
211 }
virtual Real derivative(Real intnl) const
const TensorMechanicsHardeningModel & _tan_psi
Hardening model for tan(psi)
Real TensorMechanicsPlasticWeakPlaneShear::dyieldFunction_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 120 of file TensorMechanicsPlasticWeakPlaneShear.C.

122 {
123  return stress(2, 2) * dtan_phi(intnl) - dcohesion(intnl);
124 }
virtual Real dtan_phi(const Real internal_param) const
d(tan_phi)/d(internal_param);
virtual Real dcohesion(const Real internal_param) const
d(cohesion)/d(internal_param)
void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 93 of file TensorMechanicsPlasticModel.C.

96 {
97  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
98 }
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.
RankTwoTensor TensorMechanicsPlasticWeakPlaneShear::dyieldFunction_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 113 of file TensorMechanicsPlasticWeakPlaneShear.C.

115 {
116  return df_dsig(stress, tan_phi(intnl));
117 }
virtual Real tan_phi(const Real internal_param) const
tan_phi as a function of internal parameter
RankTwoTensor df_dsig(const RankTwoTensor &stress, Real _tan_phi_or_psi) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 79 of file TensorMechanicsPlasticModel.C.

82 {
83  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
84 }
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.
void TensorMechanicsPlasticModel::execute ( )
inherited

Definition at line 42 of file TensorMechanicsPlasticModel.C.

43 {
44 }
void TensorMechanicsPlasticModel::finalize ( )
inherited

Definition at line 47 of file TensorMechanicsPlasticModel.C.

48 {
49 }
RankTwoTensor TensorMechanicsPlasticWeakPlaneShear::flowPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 127 of file TensorMechanicsPlasticWeakPlaneShear.C.

128 {
129  return df_dsig(stress, tan_psi(intnl));
130 }
RankTwoTensor df_dsig(const RankTwoTensor &stress, Real _tan_phi_or_psi) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
virtual Real tan_psi(const Real internal_param) const
tan_psi as a function of internal parameter
void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 106 of file TensorMechanicsPlasticModel.C.

109 {
110  return r.assign(1, flowPotential(stress, intnl));
111 }
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.
Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 142 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::hardPotentialV().

143 {
144  return -1.0;
145 }
void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 147 of file TensorMechanicsPlasticModel.C.

150 {
151  h.assign(numberSurfaces(), hardPotential(stress, intnl));
152 }
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
void TensorMechanicsPlasticModel::initialize ( )
inherited

Definition at line 37 of file TensorMechanicsPlasticModel.C.

38 {
39 }
bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 243 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and TensorMechanicsPlasticModel::returnMap().

244 {
245  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
246 }
const Real _f_tol
Tolerance on yield function.
std::string TensorMechanicsPlasticWeakPlaneShear::modelName ( ) const
overridevirtual

Implements TensorMechanicsPlasticModel.

Definition at line 343 of file TensorMechanicsPlasticWeakPlaneShear.C.

344 {
345  return "WeakPlaneShear";
346 }
unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited
bool TensorMechanicsPlasticModel::returnMap ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankFourTensor &  E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor &  returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor &  delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
virtualinherited

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 216 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticJ2::returnMap(), TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap(), TensorMechanicsPlasticMeanCapTC::returnMap(), TensorMechanicsPlasticMohrCoulombMulti::returnMap(), and TensorMechanicsPlasticTensileMulti::returnMap().

226 {
227  trial_stress_inadmissible = false;
228  yieldFunctionV(trial_stress, intnl_old, yf);
229 
230  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
231  if (yf[sf] > _f_tol)
232  trial_stress_inadmissible = true;
233 
234  // example of checking Kuhn-Tucker
235  std::vector<Real> dpm(numberSurfaces(), 0);
236  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
237  if (!KuhnTuckerSingleSurface(yf[sf], dpm[sf], 0))
238  return false;
239  return true;
240 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
bool KuhnTuckerSingleSurface(Real yf, Real dpm, Real dpm_tol) const
Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.
const Real _f_tol
Tolerance on yield function.
virtual void yieldFunctionV(const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
Calculates the yield functions.
Real TensorMechanicsPlasticWeakPlaneShear::smooth ( const RankTwoTensor &  stress) const
protectedvirtual

returns the 'a' parameter - see doco for _tip_scheme

Definition at line 214 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by df_dsig(), dflowPotential_dstress(), and yieldFunction().

215 {
216  Real smoother2 = _small_smoother2;
217  if (_tip_scheme == "cap")
218  {
219  Real x = stress(2, 2) - _cap_start;
220  Real p = 0;
221  if (x > 0)
222  p = x * (1 - std::exp(-_cap_rate * x));
223  smoother2 += Utility::pow<2>(p);
224  }
225  return smoother2;
226 }
MooseEnum _tip_scheme
The yield function is modified to f = sqrt(s_xz^2 + s_yz^2 + a) + s_zz*_tan_phi - _cohesion where "a"...
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
Real _small_smoother2
smoothing parameter for the cone&#39;s tip - see doco for _tip_scheme
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
Real TensorMechanicsPlasticWeakPlaneShear::tan_phi ( const Real  internal_param) const
protectedvirtual

tan_phi as a function of internal parameter

Definition at line 190 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by activeConstraints(), dyieldFunction_dstress(), TensorMechanicsPlasticWeakPlaneShear(), and yieldFunction().

191 {
192  return _tan_phi.value(internal_param);
193 }
const TensorMechanicsHardeningModel & _tan_phi
Hardening model for tan(phi)
virtual Real value(Real intnl) const
Real TensorMechanicsPlasticWeakPlaneShear::tan_psi ( const Real  internal_param) const
protectedvirtual

tan_psi as a function of internal parameter

Definition at line 202 of file TensorMechanicsPlasticWeakPlaneShear.C.

Referenced by activeConstraints(), flowPotential(), and TensorMechanicsPlasticWeakPlaneShear().

203 {
204  return _tan_psi.value(internal_param);
205 }
virtual Real value(Real intnl) const
const TensorMechanicsHardeningModel & _tan_psi
Hardening model for tan(psi)
bool TensorMechanicsPlasticModel::useCustomCTO ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 210 of file TensorMechanicsPlasticModel.C.

211 {
212  return false;
213 }
bool TensorMechanicsPlasticModel::useCustomReturnMap ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 204 of file TensorMechanicsPlasticModel.C.

205 {
206  return false;
207 }
Real TensorMechanicsPlasticWeakPlaneShear::yieldFunction ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 78 of file TensorMechanicsPlasticWeakPlaneShear.C.

79 {
80  // note that i explicitly symmeterise in preparation for Cosserat
81  return std::sqrt(Utility::pow<2>((stress(0, 2) + stress(2, 0)) / 2.0) +
82  Utility::pow<2>((stress(1, 2) + stress(2, 1)) / 2.0) + smooth(stress)) +
83  stress(2, 2) * tan_phi(intnl) - cohesion(intnl);
84 }
virtual Real tan_phi(const Real internal_param) const
tan_phi as a function of internal parameter
virtual Real cohesion(const Real internal_param) const
cohesion as a function of internal parameter
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme
void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 64 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::returnMap().

67 {
68  f.assign(1, yieldFunction(stress, intnl));
69 }
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models...

Member Data Documentation

Real TensorMechanicsPlasticWeakPlaneShear::_cap_rate
protected

dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme

Definition at line 75 of file TensorMechanicsPlasticWeakPlaneShear.h.

Referenced by d2smooth(), dsmooth(), and smooth().

Real TensorMechanicsPlasticWeakPlaneShear::_cap_start
protected

smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme

Definition at line 72 of file TensorMechanicsPlasticWeakPlaneShear.h.

Referenced by d2smooth(), dsmooth(), and smooth().

const TensorMechanicsHardeningModel& TensorMechanicsPlasticWeakPlaneShear::_cohesion
protected

Hardening model for cohesion.

Definition at line 38 of file TensorMechanicsPlasticWeakPlaneShear.h.

Referenced by cohesion(), and dcohesion().

const Real TensorMechanicsPlasticModel::_f_tol
inherited
const Real TensorMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 174 of file TensorMechanicsPlasticModel.h.

Real TensorMechanicsPlasticWeakPlaneShear::_small_smoother2
protected

smoothing parameter for the cone's tip - see doco for _tip_scheme

Definition at line 69 of file TensorMechanicsPlasticWeakPlaneShear.h.

Referenced by smooth().

const TensorMechanicsHardeningModel& TensorMechanicsPlasticWeakPlaneShear::_tan_phi
protected

Hardening model for tan(phi)

Definition at line 41 of file TensorMechanicsPlasticWeakPlaneShear.h.

Referenced by dtan_phi(), and tan_phi().

const TensorMechanicsHardeningModel& TensorMechanicsPlasticWeakPlaneShear::_tan_psi
protected

Hardening model for tan(psi)

Definition at line 44 of file TensorMechanicsPlasticWeakPlaneShear.h.

Referenced by dtan_psi(), and tan_psi().

MooseEnum TensorMechanicsPlasticWeakPlaneShear::_tip_scheme
protected

The yield function is modified to f = sqrt(s_xz^2 + s_yz^2 + a) + s_zz*_tan_phi - _cohesion where "a" depends on the tip_scheme.

Currently _tip_scheme is 'hyperbolic', where a = _small_smoother2 'cap' where a = _small_smoother2 + (p(stress(2,2) - _cap_start))^2 with the function p(x)=x(1-exp(-_cap_rate*x)) for x>0, and p=0 otherwise

Definition at line 66 of file TensorMechanicsPlasticWeakPlaneShear.h.

Referenced by d2smooth(), dsmooth(), and smooth().


The documentation for this class was generated from the following files: