www.mooseframework.org
Public Types | Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Attributes | List of all members
TensorMechanicsPlasticDruckerPragerHyperbolic Class Reference

Rate-independent non-associative Drucker Prager with hardening/softening. More...

#include <TensorMechanicsPlasticDruckerPragerHyperbolic.h>

Inheritance diagram for TensorMechanicsPlasticDruckerPragerHyperbolic:
[legend]

Public Types

enum  FrictionDilation { friction = 0, dilation = 1 }
 bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow More...
 

Public Member Functions

 TensorMechanicsPlasticDruckerPragerHyperbolic (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
virtual bool useCustomReturnMap () const override
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const override
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
void bothAB (Real intnl, Real &aaa, Real &bbb) const
 Calculates aaa and bbb as a function of the internal parameter intnl. More...
 
void dbothAB (Real intnl, Real &daaa, Real &dbbb) const
 Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl. More...
 
void onlyB (Real intnl, int fd, Real &bbb) const
 Calculate bbb or bbb_flow. More...
 
void donlyB (Real intnl, int fd, Real &dbbb) const
 Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl) More...
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
virtual RankTwoTensor df_dsig (const RankTwoTensor &stress, Real bbb) const override
 Function that's used in dyieldFunction_dstress and flowPotential. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const override
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const override
 Calculates a custom consistent tangent operator. More...
 
virtual RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
virtual Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
virtual RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
virtual RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_mc_cohesion
 Hardening model for cohesion. More...
 
const TensorMechanicsHardeningModel_mc_phi
 Hardening model for tan(phi) More...
 
const TensorMechanicsHardeningModel_mc_psi
 Hardening model for tan(psi) More...
 
const MooseEnum _mc_interpolation_scheme
 The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface. More...
 
const bool _zero_cohesion_hardening
 True if there is no hardening of cohesion. More...
 
const bool _zero_phi_hardening
 True if there is no hardening of friction angle. More...
 
const bool _zero_psi_hardening
 True if there is no hardening of dilation angle. More...
 

Private Attributes

const Real _smoother2
 smoothing parameter for the cone's tip More...
 
const bool _use_custom_returnMap
 whether to use the custom returnMap function More...
 
const bool _use_custom_cto
 Whether to use the custom consistent tangent operator calculation. More...
 
const unsigned _max_iters
 max iters for custom return map loop More...
 

Detailed Description

Rate-independent non-associative Drucker Prager with hardening/softening.

The cone's tip is smoothed in a hyperbolic fashion Most functions (eg flowPotential, etc) are simply inherited from TensorMechanicsPlasticDruckerPrager. Note df_dsig is over-ridden

Definition at line 24 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Member Enumeration Documentation

bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow

Enumerator
friction 
dilation 

Definition at line 42 of file TensorMechanicsPlasticDruckerPrager.h.

Constructor & Destructor Documentation

TensorMechanicsPlasticDruckerPragerHyperbolic::TensorMechanicsPlasticDruckerPragerHyperbolic ( const InputParameters &  parameters)

Definition at line 44 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

47  _smoother2(Utility::pow<2>(getParam<Real>("smoother"))),
48  _use_custom_returnMap(getParam<bool>("use_custom_returnMap")),
49  _use_custom_cto(getParam<bool>("use_custom_cto")),
50  _max_iters(getParam<unsigned>("max_iterations"))
51 {
52 }
const Real _smoother2
smoothing parameter for the cone&#39;s tip
TensorMechanicsPlasticDruckerPrager(const InputParameters &parameters)
const unsigned _max_iters
max iters for custom return map loop
const bool _use_custom_cto
Whether to use the custom consistent tangent operator calculation.
const bool _use_custom_returnMap
whether to use the custom returnMap function

Member Function Documentation

void TensorMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  Eijkl,
std::vector< bool > &  act,
RankTwoTensor &  returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticWeakPlaneShear, and TensorMechanicsPlasticWeakPlaneTensile.

Definition at line 183 of file TensorMechanicsPlasticModel.C.

189 {
190  mooseAssert(f.size() == numberSurfaces(),
191  "f incorrectly sized at " << f.size() << " in activeConstraints");
192  act.resize(numberSurfaces());
193  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
194  act[surface] = (f[surface] > _f_tol);
195 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
const Real _f_tol
Tolerance on yield function.
void TensorMechanicsPlasticDruckerPrager::bothAB ( Real  intnl,
Real &  aaa,
Real &  bbb 
) const
inherited

Calculates aaa and bbb as a function of the internal parameter intnl.

Definition at line 141 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), CappedDruckerPragerStressUpdate::initializeVars(), returnMap(), yieldFunction(), TensorMechanicsPlasticDruckerPrager::yieldFunction(), and CappedDruckerPragerStressUpdate::yieldFunctionValues().

142 {
144  {
145  aaa = _aaa;
146  bbb = _bbb;
147  return;
148  }
149  initializeAandB(intnl, aaa, bbb);
150 }
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
void initializeAandB(Real intnl, Real &aaa, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
RankFourTensor TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
overrideprotectedvirtual

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 194 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

201 {
202  if (!_use_custom_cto)
204  trial_stress, intnl_old, stress, intnl, E_ijkl, cumulative_pm);
205 
206  const Real mu = E_ijkl(0, 1, 0, 1);
207  const Real la = E_ijkl(0, 0, 0, 0) - 2.0 * mu;
208  const Real bulky = 3.0 * la + 2.0 * mu;
209  Real bbb;
210  onlyB(intnl, friction, bbb);
211  Real bbb_flow;
212  onlyB(intnl, dilation, bbb_flow);
213  Real dbbb_flow;
214  donlyB(intnl, dilation, dbbb_flow);
215  const Real bbb_flow_mod = bbb_flow + cumulative_pm[0] * dbbb_flow;
216  const Real J2 = stress.secondInvariant();
217  const RankTwoTensor sij = stress.deviatoric();
218  const Real sq = std::sqrt(J2 + _smoother2);
219 
220  const Real one_over_h =
221  1.0 / (-dyieldFunction_dintnl(stress, intnl) + mu * J2 / Utility::pow<2>(sq) +
222  3.0 * bbb * bbb_flow_mod * bulky); // correct up to hard
223 
224  const RankTwoTensor df_dsig_timesE =
225  mu * sij / sq + bulky * bbb * RankTwoTensor(RankTwoTensor::initIdentity); // correct
226  const RankTwoTensor rmod_timesE =
227  mu * sij / sq +
228  bulky * bbb_flow_mod * RankTwoTensor(RankTwoTensor::initIdentity); // correct up to hard
229 
230  const RankFourTensor coeff_ep =
231  E_ijkl - one_over_h * rmod_timesE.outerProduct(df_dsig_timesE); // correct
232 
233  const RankFourTensor dr_dsig_timesE = -0.5 * mu * sij.outerProduct(sij) / Utility::pow<3>(sq) +
234  mu * stress.d2secondInvariant() / sq; // correct
235  const RankTwoTensor df_dsig_E_dr_dsig =
236  0.5 * mu * _smoother2 * sij / Utility::pow<4>(sq); // correct
237 
238  const RankFourTensor coeff_si =
239  RankFourTensor(RankFourTensor::initIdentitySymmetricFour) +
240  cumulative_pm[0] *
241  (dr_dsig_timesE - one_over_h * rmod_timesE.outerProduct(df_dsig_E_dr_dsig));
242 
243  RankFourTensor s_inv;
244  try
245  {
246  s_inv = coeff_si.invSymm();
247  }
248  catch (MooseException & e)
249  {
250  return coeff_ep; // when coeff_si is singular return the "linear" tangent operator
251  }
252 
253  return s_inv * coeff_ep;
254 }
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const override
The derivative of yield function with respect to the internal parameter.
const Real _smoother2
smoothing parameter for the cone&#39;s tip
virtual RankFourTensor consistentTangentOperator(const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
Calculates a custom consistent tangent operator.
const bool _use_custom_cto
Whether to use the custom consistent tangent operator calculation.
void donlyB(Real intnl, int fd, Real &dbbb) const
Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.
void TensorMechanicsPlasticDruckerPrager::dbothAB ( Real  intnl,
Real &  daaa,
Real &  dbbb 
) const
inherited

Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl.

Definition at line 211 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), TensorMechanicsPlasticDruckerPrager::dyieldFunction_dintnl(), and returnMap().

212 {
214  {
215  daaa = 0;
216  dbbb = 0;
217  return;
218  }
219 
220  const Real C = _mc_cohesion.value(intnl);
221  const Real dC = _mc_cohesion.derivative(intnl);
222  const Real cosphi = std::cos(_mc_phi.value(intnl));
223  const Real dcosphi = -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
224  const Real sinphi = std::sin(_mc_phi.value(intnl));
225  const Real dsinphi = std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
226  switch (_mc_interpolation_scheme)
227  {
228  case 0: // outer_tip
229  daaa = 2.0 * std::sqrt(3.0) * (dC * cosphi / (3.0 - sinphi) + C * dcosphi / (3.0 - sinphi) +
230  C * cosphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
231  dbbb = 2.0 / std::sqrt(3.0) *
232  (dsinphi / (3.0 - sinphi) + sinphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
233  break;
234  case 1: // inner_tip
235  daaa = 2.0 * std::sqrt(3.0) * (dC * cosphi / (3.0 + sinphi) + C * dcosphi / (3.0 + sinphi) -
236  C * cosphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
237  dbbb = 2.0 / std::sqrt(3.0) *
238  (dsinphi / (3.0 + sinphi) - sinphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
239  break;
240  case 2: // lode_zero
241  daaa = dC * cosphi + C * dcosphi;
242  dbbb = dsinphi / 3.0;
243  break;
244  case 3: // inner_edge
245  daaa = 3.0 * dC * cosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) +
246  3.0 * C * dcosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
247  3.0 * C * cosphi * 3.0 * sinphi * dsinphi /
248  std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
249  dbbb = dsinphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
250  3.0 * sinphi * sinphi * dsinphi / std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
251  break;
252  case 4: // native
253  daaa = dC;
254  dbbb = dsinphi / cosphi - sinphi * dcosphi / Utility::pow<2>(cosphi);
255  break;
256  }
257 }
virtual Real derivative(Real intnl) const
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
virtual Real value(Real intnl) const
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const TensorMechanicsHardeningModel & _mc_cohesion
Hardening model for cohesion.
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.
RankTwoTensor TensorMechanicsPlasticDruckerPragerHyperbolic::df_dsig ( const RankTwoTensor &  stress,
Real  bbb 
) const
overrideprotectedvirtual

Function that's used in dyieldFunction_dstress and flowPotential.

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 65 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

66 {
67  return 0.5 * stress.dsecondInvariant() / std::sqrt(stress.secondInvariant() + _smoother2) +
68  stress.dtrace() * bbb;
69 }
const Real _smoother2
smoothing parameter for the cone&#39;s tip
RankTwoTensor TensorMechanicsPlasticDruckerPrager::dflowPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 126 of file TensorMechanicsPlasticDruckerPrager.C.

128 {
129  Real dbbb;
130  donlyB(intnl, dilation, dbbb);
131  return stress.dtrace() * dbbb;
132 }
void donlyB(Real intnl, int fd, Real &dbbb) const
Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)
void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 134 of file TensorMechanicsPlasticModel.C.

137 {
138  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
139 }
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.
RankFourTensor TensorMechanicsPlasticDruckerPragerHyperbolic::dflowPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 72 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

74 {
75  RankFourTensor dr_dstress;
76  dr_dstress = 0.5 * stress.d2secondInvariant() / std::sqrt(stress.secondInvariant() + _smoother2);
77  dr_dstress += -0.5 * 0.5 * stress.dsecondInvariant().outerProduct(stress.dsecondInvariant()) /
78  std::pow(stress.secondInvariant() + _smoother2, 1.5);
79  return dr_dstress;
80 }
const Real _smoother2
smoothing parameter for the cone&#39;s tip
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 120 of file TensorMechanicsPlasticModel.C.

123 {
124  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
125 }
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.
Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 169 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dintnlV().

171 {
172  return 0.0;
173 }
void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 175 of file TensorMechanicsPlasticModel.C.

178 {
179  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
180 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter. ...
RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 155 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dstressV().

157 {
158  return RankTwoTensor();
159 }
void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 161 of file TensorMechanicsPlasticModel.C.

164 {
165  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
166 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.
void TensorMechanicsPlasticDruckerPrager::donlyB ( Real  intnl,
int  fd,
Real &  dbbb 
) const
inherited

Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 169 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), consistentTangentOperator(), TensorMechanicsPlasticDruckerPrager::dflowPotential_dintnl(), returnMap(), and CappedDruckerPragerStressUpdate::setIntnlDerivatives().

170 {
171  if (_zero_phi_hardening && (fd == friction))
172  {
173  dbbb = 0;
174  return;
175  }
176  if (_zero_psi_hardening && (fd == dilation))
177  {
178  dbbb = 0;
179  return;
180  }
181  const Real s = (fd == friction) ? std::sin(_mc_phi.value(intnl)) : std::sin(_mc_psi.value(intnl));
182  const Real ds = (fd == friction) ? std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
183  : std::cos(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
184  switch (_mc_interpolation_scheme)
185  {
186  case 0: // outer_tip
187  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 - s) + s * ds / Utility::pow<2>(3.0 - s));
188  break;
189  case 1: // inner_tip
190  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 + s) - s * ds / Utility::pow<2>(3.0 + s));
191  break;
192  case 2: // lode_zero
193  dbbb = ds / 3.0;
194  break;
195  case 3: // inner_edge
196  dbbb = ds / std::sqrt(9.0 + 3.0 * Utility::pow<2>(s)) -
197  3 * s * s * ds / std::pow(9.0 + 3.0 * Utility::pow<2>(s), 1.5);
198  break;
199  case 4: // native
200  const Real c =
201  (fd == friction) ? std::cos(_mc_phi.value(intnl)) : std::cos(_mc_psi.value(intnl));
202  const Real dc = (fd == friction)
203  ? -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
204  : -std::sin(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
205  dbbb = ds / c - s * dc / Utility::pow<2>(c);
206  break;
207  }
208 }
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
virtual Real derivative(Real intnl) const
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
const TensorMechanicsHardeningModel & _mc_psi
Hardening model for tan(psi)
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
virtual Real value(Real intnl) const
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.
Real TensorMechanicsPlasticDruckerPrager::dyieldFunction_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 97 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by consistentTangentOperator().

99 {
100  Real daaa;
101  Real dbbb;
102  dbothAB(intnl, daaa, dbbb);
103  return stress.trace() * dbbb - daaa;
104 }
void dbothAB(Real intnl, Real &daaa, Real &dbbb) const
Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl...
void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 93 of file TensorMechanicsPlasticModel.C.

96 {
97  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
98 }
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.
RankTwoTensor TensorMechanicsPlasticDruckerPrager::dyieldFunction_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 88 of file TensorMechanicsPlasticDruckerPrager.C.

90 {
91  Real bbb;
92  onlyB(intnl, friction, bbb);
93  return df_dsig(stress, bbb);
94 }
virtual RankTwoTensor df_dsig(const RankTwoTensor &stress, Real bbb) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.
void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 79 of file TensorMechanicsPlasticModel.C.

82 {
83  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
84 }
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.
void TensorMechanicsPlasticModel::execute ( )
inherited

Definition at line 42 of file TensorMechanicsPlasticModel.C.

43 {
44 }
void TensorMechanicsPlasticModel::finalize ( )
inherited

Definition at line 47 of file TensorMechanicsPlasticModel.C.

48 {
49 }
RankTwoTensor TensorMechanicsPlasticDruckerPrager::flowPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 107 of file TensorMechanicsPlasticDruckerPrager.C.

108 {
109  Real bbb_flow;
110  onlyB(intnl, dilation, bbb_flow);
111  return df_dsig(stress, bbb_flow);
112 }
virtual RankTwoTensor df_dsig(const RankTwoTensor &stress, Real bbb) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.
void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 106 of file TensorMechanicsPlasticModel.C.

109 {
110  return r.assign(1, flowPotential(stress, intnl));
111 }
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.
Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 142 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::hardPotentialV().

143 {
144  return -1.0;
145 }
void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 147 of file TensorMechanicsPlasticModel.C.

150 {
151  h.assign(numberSurfaces(), hardPotential(stress, intnl));
152 }
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
void TensorMechanicsPlasticModel::initialize ( )
inherited

Definition at line 37 of file TensorMechanicsPlasticModel.C.

38 {
39 }
bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 243 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and TensorMechanicsPlasticModel::returnMap().

244 {
245  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
246 }
const Real _f_tol
Tolerance on yield function.
std::string TensorMechanicsPlasticDruckerPragerHyperbolic::modelName ( ) const
overridevirtual

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 83 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

84 {
85  return "DruckerPragerHyperbolic";
86 }
unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited
void TensorMechanicsPlasticDruckerPrager::onlyB ( Real  intnl,
int  fd,
Real &  bbb 
) const
inherited

Calculate bbb or bbb_flow.

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 153 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), consistentTangentOperator(), TensorMechanicsPlasticDruckerPrager::dyieldFunction_dstress(), TensorMechanicsPlasticDruckerPrager::flowPotential(), CappedDruckerPragerStressUpdate::initializeVars(), returnMap(), CappedDruckerPragerStressUpdate::setIntnlDerivatives(), and CappedDruckerPragerStressUpdate::setIntnlValues().

154 {
155  if (_zero_phi_hardening && (fd == friction))
156  {
157  bbb = _bbb;
158  return;
159  }
160  if (_zero_psi_hardening && (fd == dilation))
161  {
162  bbb = _bbb_flow;
163  return;
164  }
165  initializeB(intnl, fd, bbb);
166 }
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
void initializeB(Real intnl, int fd, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
bool TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankFourTensor &  E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor &  returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor &  delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
overrideprotectedvirtual

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 89 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

99 {
100  if (!(_use_custom_returnMap))
101  return TensorMechanicsPlasticModel::returnMap(trial_stress,
102  intnl_old,
103  E_ijkl,
104  ep_plastic_tolerance,
105  returned_stress,
106  returned_intnl,
107  dpm,
108  delta_dp,
109  yf,
110  trial_stress_inadmissible);
111 
112  yf.resize(1);
113 
114  yf[0] = yieldFunction(trial_stress, intnl_old);
115 
116  if (yf[0] < _f_tol)
117  {
118  // the trial_stress is admissible
119  trial_stress_inadmissible = false;
120  return true;
121  }
122 
123  trial_stress_inadmissible = true;
124  const Real mu = E_ijkl(0, 1, 0, 1);
125  const Real lambda = E_ijkl(0, 0, 0, 0) - 2.0 * mu;
126  const Real bulky = 3.0 * lambda + 2.0 * mu;
127  const Real Tr_trial = trial_stress.trace();
128  const Real J2trial = trial_stress.secondInvariant();
129 
130  // Perform a Newton-Raphson to find dpm when
131  // residual = (1 + dpm*mu/ll)sqrt(ll^2 - s^2) - sqrt(J2trial) = 0, with s=smoother
132  // with ll = sqrt(J2 + s^2) = aaa - bbb*Tr(stress) = aaa - bbb(Tr_trial - p*3*bulky*bbb_flow)
133  Real aaa;
134  Real daaa;
135  Real bbb;
136  Real dbbb;
137  Real bbb_flow;
138  Real dbbb_flow;
139  Real ll;
140  Real dll;
141  Real residual;
142  Real jac;
143  dpm[0] = 0;
144  unsigned int iter = 0;
145  do
146  {
147  bothAB(intnl_old + dpm[0], aaa, bbb);
148  dbothAB(intnl_old + dpm[0], daaa, dbbb);
149  onlyB(intnl_old + dpm[0], dilation, bbb_flow);
150  donlyB(intnl_old + dpm[0], dilation, dbbb_flow);
151  ll = aaa - bbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow);
152  dll = daaa - dbbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow) +
153  bbb * bulky * 3 * (bbb_flow + dpm[0] * dbbb_flow);
154  residual = bbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow) - aaa +
155  std::sqrt(J2trial / Utility::pow<2>(1 + dpm[0] * mu / ll) + _smoother2);
156  jac = dbbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow) -
157  bbb * bulky * 3 * (bbb_flow + dpm[0] * dbbb_flow) - daaa +
158  0.5 * J2trial * (-2.0) * (mu / ll - dpm[0] * mu * dll / ll / ll) /
159  Utility::pow<3>(1 + dpm[0] * mu / ll) /
160  std::sqrt(J2trial / Utility::pow<2>(1.0 + dpm[0] * mu / ll) + _smoother2);
161  dpm[0] += -residual / jac;
162  if (iter > _max_iters) // not converging
163  return false;
164  iter++;
165  } while (residual * residual > _f_tol * _f_tol);
166 
167  // set the returned values
168  yf[0] = 0;
169  returned_intnl = intnl_old + dpm[0];
170 
171  bothAB(returned_intnl, aaa, bbb);
172  onlyB(returned_intnl, dilation, bbb_flow);
173  ll = aaa - bbb * (Tr_trial - dpm[0] * bulky * 3.0 * bbb_flow);
174  returned_stress =
175  trial_stress.deviatoric() / (1.0 + dpm[0] * mu / ll); // this is the deviatoric part only
176 
177  RankTwoTensor rij = 0.5 * returned_stress.deviatoric() /
178  ll; // this is the derivatoric part the flow potential only
179 
180  // form the returned stress and the full flow potential
181  const Real returned_trace_over_3 = (aaa - ll) / bbb / 3.0;
182  for (unsigned i = 0; i < 3; ++i)
183  {
184  returned_stress(i, i) += returned_trace_over_3;
185  rij(i, i) += bbb_flow;
186  }
187 
188  delta_dp = rij * dpm[0];
189 
190  return true;
191 }
const Real _smoother2
smoothing parameter for the cone&#39;s tip
Real yieldFunction(const RankTwoTensor &stress, Real intnl) const override
The following functions are what you should override when building single-plasticity models...
virtual bool returnMap(const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
Performs a custom return-map.
void bothAB(Real intnl, Real &aaa, Real &bbb) const
Calculates aaa and bbb as a function of the internal parameter intnl.
const unsigned _max_iters
max iters for custom return map loop
void donlyB(Real intnl, int fd, Real &dbbb) const
Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)
void dbothAB(Real intnl, Real &daaa, Real &dbbb) const
Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl...
const Real _f_tol
Tolerance on yield function.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.
const bool _use_custom_returnMap
whether to use the custom returnMap function
bool TensorMechanicsPlasticDruckerPragerHyperbolic::useCustomCTO ( ) const
overridevirtual

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 263 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

264 {
265  return _use_custom_cto;
266 }
const bool _use_custom_cto
Whether to use the custom consistent tangent operator calculation.
bool TensorMechanicsPlasticDruckerPragerHyperbolic::useCustomReturnMap ( ) const
overridevirtual

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 257 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

258 {
259  return _use_custom_returnMap;
260 }
const bool _use_custom_returnMap
whether to use the custom returnMap function
Real TensorMechanicsPlasticDruckerPragerHyperbolic::yieldFunction ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 55 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

Referenced by returnMap().

57 {
58  Real aaa;
59  Real bbb;
60  bothAB(intnl, aaa, bbb);
61  return std::sqrt(stress.secondInvariant() + _smoother2) + stress.trace() * bbb - aaa;
62 }
const Real _smoother2
smoothing parameter for the cone&#39;s tip
void bothAB(Real intnl, Real &aaa, Real &bbb) const
Calculates aaa and bbb as a function of the internal parameter intnl.
void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 64 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::returnMap().

67 {
68  f.assign(1, yieldFunction(stress, intnl));
69 }
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models...

Member Data Documentation

const Real TensorMechanicsPlasticModel::_f_tol
inherited
const Real TensorMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 174 of file TensorMechanicsPlasticModel.h.

const unsigned TensorMechanicsPlasticDruckerPragerHyperbolic::_max_iters
private

max iters for custom return map loop

Definition at line 73 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by returnMap().

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_cohesion
protectedinherited
const MooseEnum TensorMechanicsPlasticDruckerPrager::_mc_interpolation_scheme
protectedinherited

The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

Various matching schemes may be used and this parameter holds the user's choice.

Definition at line 94 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by TensorMechanicsPlasticDruckerPrager::dbothAB(), TensorMechanicsPlasticDruckerPrager::donlyB(), TensorMechanicsPlasticDruckerPrager::initializeAandB(), and TensorMechanicsPlasticDruckerPrager::initializeB().

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_phi
protectedinherited
const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_psi
protectedinherited
const Real TensorMechanicsPlasticDruckerPragerHyperbolic::_smoother2
private

smoothing parameter for the cone's tip

Definition at line 64 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by consistentTangentOperator(), df_dsig(), dflowPotential_dstress(), returnMap(), and yieldFunction().

const bool TensorMechanicsPlasticDruckerPragerHyperbolic::_use_custom_cto
private

Whether to use the custom consistent tangent operator calculation.

Definition at line 70 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by consistentTangentOperator(), and useCustomCTO().

const bool TensorMechanicsPlasticDruckerPragerHyperbolic::_use_custom_returnMap
private

whether to use the custom returnMap function

Definition at line 67 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by returnMap(), and useCustomReturnMap().

const bool TensorMechanicsPlasticDruckerPrager::_zero_cohesion_hardening
protectedinherited

True if there is no hardening of cohesion.

Definition at line 97 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by TensorMechanicsPlasticDruckerPrager::bothAB(), and TensorMechanicsPlasticDruckerPrager::dbothAB().

const bool TensorMechanicsPlasticDruckerPrager::_zero_phi_hardening
protectedinherited
const bool TensorMechanicsPlasticDruckerPrager::_zero_psi_hardening
protectedinherited

True if there is no hardening of dilation angle.

Definition at line 103 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by TensorMechanicsPlasticDruckerPrager::donlyB(), and TensorMechanicsPlasticDruckerPrager::onlyB().


The documentation for this class was generated from the following files: