MultiPlasticityLinearSystem Class Reference

MultiPlasticityLinearSystem computes the linear system and handles linear-dependence removal for use in FiniteStrainMultiPlasticity. More...

#include <MultiPlasticityLinearSystem.h>

Inheritance diagram for MultiPlasticityLinearSystem:
[legend]

## Public Member Functions

MultiPlasticityLinearSystem (const MooseObject *moose_object)

## Protected Member Functions

virtual void calculateConstraints (const RankTwoTensor &stress, const std::vector< Real > &intnl_old, const std::vector< Real > &intnl, const std::vector< Real > &pm, const RankTwoTensor &delta_dp, std::vector< Real > &f, std::vector< RankTwoTensor > &r, RankTwoTensor &epp, std::vector< Real > &ic, const std::vector< bool > &active)
The constraints. More...

virtual void calculateRHS (const RankTwoTensor &stress, const std::vector< Real > &intnl_old, const std::vector< Real > &intnl, const std::vector< Real > &pm, const RankTwoTensor &delta_dp, std::vector< Real > &rhs, const std::vector< bool > &active, bool eliminate_ld, std::vector< bool > &deactivated_due_to_ld)
Calculate the RHS which is rhs = -(epp(0,0), epp(1,0), epp(1,1), epp(2,0), epp(2,1), epp(2,2), f[0], f[1], ..., f[num_f], ic[0], ic[1], ..., ic[num_ic]) More...

virtual void calculateJacobian (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< Real > &pm, const RankFourTensor &E_inv, const std::vector< bool > &active, const std::vector< bool > &deactivated_due_to_ld, std::vector< std::vector< Real >> &jac)
d(rhs)/d(dof) More...

virtual void nrStep (const RankTwoTensor &stress, const std::vector< Real > &intnl_old, const std::vector< Real > &intnl, const std::vector< Real > &pm, const RankFourTensor &E_inv, const RankTwoTensor &delta_dp, RankTwoTensor &dstress, std::vector< Real > &dpm, std::vector< Real > &dintnl, const std::vector< bool > &active, std::vector< bool > &deactivated_due_to_ld)
Performs one Newton-Raphson step. More...

virtual void yieldFunction (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< Real > &f)
The active yield function(s) More...

virtual void dyieldFunction_dstress (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &df_dstress)
The derivative of the active yield function(s) with respect to stress. More...

virtual void dyieldFunction_dintnl (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< Real > &df_dintnl)
The derivative of active yield function(s) with respect to their internal parameters (the user objects assume there is exactly one internal param per yield function) More...

virtual void flowPotential (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &r)
The active flow potential(s) - one for each yield function. More...

virtual void dflowPotential_dstress (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankFourTensor > &dr_dstress)
The derivative of the active flow potential(s) with respect to stress. More...

virtual void dflowPotential_dintnl (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &dr_dintnl)
The derivative of the active flow potentials with respect to the active internal parameters The UserObjects explicitly assume that r[alpha] is only dependent on intnl[alpha]. More...

virtual void hardPotential (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< Real > &h)
The active hardening potentials (one for each internal parameter and for each yield function) by assumption in the Userobjects, the h[a][alpha] is nonzero only if the surface alpha is part of model a, so we only calculate those here. More...

virtual void dhardPotential_dstress (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &dh_dstress)
The derivative of the active hardening potentials with respect to stress By assumption in the Userobjects, the h[a][alpha] is nonzero only for a = alpha, so we only calculate those here. More...

virtual void dhardPotential_dintnl (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< Real > &dh_dintnl)
The derivative of the active hardening potentials with respect to the active internal parameters. More...

virtual void buildActiveConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, const std::vector< Real > &intnl, const RankFourTensor &Eijkl, std::vector< bool > &act)
Constructs a set of active constraints, given the yield functions, f. More...

unsigned int modelNumber (unsigned int surface)
returns the model number, given the surface number More...

bool anyActiveSurfaces (int model, const std::vector< bool > &active)
returns true if any internal surfaces of the given model are active according to 'active' More...

void activeModelSurfaces (int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=0 if there are no active surfaces of the given model. More...

void activeSurfaces (int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces)
Returns the external surface number(s) of the active surfaces of the given model This may be of size=0 if there are no active surfaces of the given model. More...

bool returnMapAll (const RankTwoTensor &trial_stress, const std::vector< Real > &intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &stress, std::vector< Real > &intnl, std::vector< Real > &pm, std::vector< Real > &cumulative_pm, RankTwoTensor &delta_dp, std::vector< Real > &yf, unsigned &num_successful_plastic_returns, unsigned &custom_model)
Performs a returnMap for each plastic model using their inbuilt returnMap functions. More...

## Protected Attributes

Real _svd_tol
Tolerance on the minimum ratio of singular values before flow-directions are deemed linearly dependent. More...

Real _min_f_tol
Minimum value of the _f_tol parameters for the Yield Function User Objects. More...

const InputParameters & _params

unsigned int _num_models
Number of plastic models for this material. More...

unsigned int _num_surfaces
Number of surfaces within the plastic models. More...

std::vector< std::vector< unsigned int > > _surfaces_given_model
_surfaces_given_model[model_number] = vector of surface numbers for this model More...

MooseEnum _specialIC
Allows initial set of active constraints to be chosen optimally. More...

std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc. More...

## Private Member Functions

virtual int singularValuesOfR (const std::vector< RankTwoTensor > &r, std::vector< Real > &s)
Performs a singular-value decomposition of r and returns the singular values. More...

virtual void eliminateLinearDependence (const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< Real > &f, const std::vector< RankTwoTensor > &r, const std::vector< bool > &active, std::vector< bool > &deactivated_due_to_ld)
Performs a number of singular-value decompositions to check for linear-dependence of the active directions "r" If linear dependence is found, then deactivated_due_to_ld will contain 'true' entries where surfaces need to be deactivated_due_to_ld. More...

## Detailed Description

MultiPlasticityLinearSystem computes the linear system and handles linear-dependence removal for use in FiniteStrainMultiPlasticity.

Note that if run in debug mode you might have to use the –no-trap-fpe flag because PETSc-LAPACK-BLAS explicitly compute 0/0 and 1/0, and this causes Libmesh to trap the floating-point exceptions

These routines are quite complicated, so here is an extended explanation.

SURFACES AND MODELS

Each plasticity model can have multiple surfaces (eg, Mohr-Coulomb has 6 surfaces), and one internal parameter. This is also described in MultiPlasticityRawComponentAssembler. The

VARIABLE NAMES

_num_surfaces = total number of surfaces _num_models = total number of plasticity models pm = plasticity multiplier. pm.size() = _num_surfaces intnl = internal variable. intnl.size() = _num_models

DEGREES OF FREEDOM

The degrees of freedom are: the 6 components of stress (it is assumed to be symmetric) the plasticity multipliers, pm. the internal parameters, intnl.

Note that in any single Newton-Raphson (NR) iteration, the number of pm and intnl may be different from any other NR iteration. This is because of deactivating surfaces because they are deemed unimportant by the calling program (eg, their yield function is < 0), or because their flow direction is linearly dependent on other surfaces. Therefore:

• there are "not active" surfaces, and these never enter any right-hand-side (RHS), or jacobian, residual, etc calculations. It is as if they never existed.
• there are "active" surfaces, and all these enter RHS, jacobian, etc, calculations. This set of active surfaces may further decompose into "linearly independent" and "linearly dependent" surfaces. The latter are surfaces whose flow direction is linearly dependent on the former. Only the dofs from "linearly independent" constraints are changed during the NR step.

Hence, more exactly, the degrees of freedom, whose changes will be provided in the NR step are: the 6 components of stress (it is assumed to be symmetric) the plasticity multipliers, pm, belonging to linearly independent surfaces the internal parameters, intnl, belonging to models with at least one linearly-independent surface

THE CONSTRAINTS AND RHS

The variables calculated by calculateConstraints and calculateRHS are: epp = pm*r - E_inv*(trial_stress - stress) = pm*r - delta_dp f = yield function [all the active constraints, including the deactivated_due_to_ld. The latter ones will not be put into the linear system] ic = intnl - intnl_old + pm*h [only for models that contain active surfaces]

Here pm*r = sum_{active_alpha} pm[alpha]*r[alpha]. Note that this contains all the "active" surfaces, even the ones that have been deactivated_due_to_ld. in calculateConstraints, etc, r is a std::vector containing only all the active flow directions (including deactivated_due_to_ld, but not the "not active"). f = all the "active" surfaces, even the ones that have been deactivated_due_to_ld. However, the latter are not put into the RHS pm*h = sum_{active_alpha} pm[alpha]*h[alpha]. Note that this only contains the "active" hardening potentials, even the ones that have been deactivated_due_to_ld. In calculateConstraints, calculateRHS and calculateJacobian, h is a std::vector containing only these "active" ones. Hence, the sum_{active_alpha} contains deactivated_due_to_ld contributions. HOWEVER, if all the surfaces belonging to a model are either "not active" or deactivated_due_to_ld, then this ic is not included in the RHS

The RHS is rhs = -(epp(0,0), epp(1,0), epp(1,1), epp(2,0), epp(2,1), epp(2,2), f[0], f[1], ..., f[_num_active_f], ic[0], ic[1], ..., ic[num_active_ic]) Notice the appearance of only the i>=j "epp" components.

THE JACOBIAN

This is d(-rhs)/d(dof). Remember that the dofs are dependent on what is deactivated_due_to_ld, as specified above. In matrix form, the Jacobian is: ( depp_dstress depp_dpm depp_dintnl ) ( df_dstress 0 df_dintnl ) ( dic_dstress dic_dpm dic_dintnl ) For the "epp" terms, only the i>=j components are kept in the RHS, so only these terms are kept here too

Definition at line 122 of file MultiPlasticityLinearSystem.h.

## Constructor & Destructor Documentation

 MultiPlasticityLinearSystem::MultiPlasticityLinearSystem ( const MooseObject * moose_object )

Definition at line 29 of file MultiPlasticityLinearSystem.C.

31  _svd_tol(_params.get<Real>("linear_dependent")),
32  _min_f_tol(-1.0)
33 {
34  for (unsigned model = 0; model < _num_models; ++model)
35  if (_min_f_tol == -1.0 || _min_f_tol > _f[model]->_f_tol)
36  _min_f_tol = _f[model]->_f_tol;
37
38  MooseRandom::seed(0);
39 }
Real _svd_tol
Tolerance on the minimum ratio of singular values before flow-directions are deemed linearly dependen...
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
MultiPlasticityRawComponentAssembler(const MooseObject *moose_object)
Real _min_f_tol
Minimum value of the _f_tol parameters for the Yield Function User Objects.

## Member Function Documentation

 void MultiPlasticityRawComponentAssembler::activeModelSurfaces ( int model, const std::vector< bool > & active, std::vector< unsigned int > & active_surfaces_of_model )
protectedinherited

Returns the internal surface number(s) of the active surfaces of the given model This may be of size=0 if there are no active surfaces of the given model.

Parameters
 model the model number active array with entries being 'true' if the surface is active [out] active_surfaces_of_model the output

Definition at line 809 of file MultiPlasticityRawComponentAssembler.C.

813 {
814  active_surfaces_of_model.resize(0);
815  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces(); ++model_surface)
816  if (active[_surfaces_given_model[model][model_surface]])
817  active_surfaces_of_model.push_back(model_surface);
818 }
std::vector< std::vector< unsigned int > > _surfaces_given_model
_surfaces_given_model[model_number] = vector of surface numbers for this model
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
 void MultiPlasticityRawComponentAssembler::activeSurfaces ( int model, const std::vector< bool > & active, std::vector< unsigned int > & active_surfaces )
protectedinherited

Returns the external surface number(s) of the active surfaces of the given model This may be of size=0 if there are no active surfaces of the given model.

Parameters
 model the model number active array with entries being 'true' if the surface is active [out] active_surfaces the output

Definition at line 798 of file MultiPlasticityRawComponentAssembler.C.

Referenced by calculateConstraints().

801 {
802  active_surfaces.resize(0);
803  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces(); ++model_surface)
804  if (active[_surfaces_given_model[model][model_surface]])
805  active_surfaces.push_back(_surfaces_given_model[model][model_surface]);
806 }
std::vector< std::vector< unsigned int > > _surfaces_given_model
_surfaces_given_model[model_number] = vector of surface numbers for this model
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
 bool MultiPlasticityRawComponentAssembler::anyActiveSurfaces ( int model, const std::vector< bool > & active )
protectedinherited

returns true if any internal surfaces of the given model are active according to 'active'

Definition at line 789 of file MultiPlasticityRawComponentAssembler.C.

790 {
791  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces(); ++model_surface)
792  if (active[_surfaces_given_model[model][model_surface]])
793  return true;
794  return false;
795 }
std::vector< std::vector< unsigned int > > _surfaces_given_model
_surfaces_given_model[model_number] = vector of surface numbers for this model
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
 void MultiPlasticityRawComponentAssembler::buildActiveConstraints ( const std::vector< Real > & f, const RankTwoTensor & stress, const std::vector< Real > & intnl, const RankFourTensor & Eijkl, std::vector< bool > & act )
protectedvirtualinherited

Constructs a set of active constraints, given the yield functions, f.

This uses TensorMechanicsPlasticModel::activeConstraints to identify the active constraints for each model.

Parameters
 f yield functions (should be _num_surfaces of these) stress stress tensor intnl internal parameters Eijkl elasticity tensor (stress = Eijkl*strain) [out] act the set of active constraints (will be resized to _num_surfaces)

Definition at line 339 of file MultiPlasticityRawComponentAssembler.C.

Referenced by ComputeMultiPlasticityStress::returnMap().

344 {
345  mooseAssert(f.size() == _num_surfaces,
346  "buildActiveConstraints called with f.size = " << f.size() << " while there are "
347  << _num_surfaces
348  << " surfaces");
349  mooseAssert(intnl.size() == _num_models,
350  "buildActiveConstraints called with intnl.size = " << intnl.size()
351  << " while there are "
352  << _num_models
353  << " models");
354
355  if (_specialIC == "rock")
356  buildActiveConstraintsRock(f, stress, intnl, Eijkl, act);
357  else if (_specialIC == "joint")
358  buildActiveConstraintsJoint(f, stress, intnl, Eijkl, act);
359  else // no specialIC
360  {
361  act.resize(0);
362  unsigned ind = 0;
363  for (unsigned model = 0; model < _num_models; ++model)
364  {
365  std::vector<Real> model_f(0);
366  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces(); ++model_surface)
367  model_f.push_back(f[ind++]);
368  std::vector<bool> model_act;
369  RankTwoTensor returned_stress;
370  _f[model]->activeConstraints(
371  model_f, stress, intnl[model], Eijkl, model_act, returned_stress);
372  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces(); ++model_surface)
373  act.push_back(model_act[model_surface]);
374  }
375  }
376 }
MooseEnum _specialIC
Allows initial set of active constraints to be chosen optimally.
void buildActiveConstraintsRock(const std::vector< Real > &f, const RankTwoTensor &stress, const std::vector< Real > &intnl, const RankFourTensor &Eijkl, std::vector< bool > &act)
"Rock" version Constructs a set of active constraints, given the yield functions, f...
void buildActiveConstraintsJoint(const std::vector< Real > &f, const RankTwoTensor &stress, const std::vector< Real > &intnl, const RankFourTensor &Eijkl, std::vector< bool > &act)
"Joint" version Constructs a set of active constraints, given the yield functions, f.
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 void MultiPlasticityLinearSystem::calculateConstraints ( const RankTwoTensor & stress, const std::vector< Real > & intnl_old, const std::vector< Real > & intnl, const std::vector< Real > & pm, const RankTwoTensor & delta_dp, std::vector< Real > & f, std::vector< RankTwoTensor > & r, RankTwoTensor & epp, std::vector< Real > & ic, const std::vector< bool > & active )
protectedvirtual

The constraints.

These are set to zero (or <=0 in the case of the yield functions) by the Newton-Raphson process, except in the case of linear-dependence which complicates things.

Parameters
 stress The stress intnl_old old values of the internal parameters intnl internal parameters pm Current value(s) of the plasticity multiplier(s) (consistency parameters) delta_dp Change in plastic strain incurred so far during the return [out] f Active yield function(s) [out] r Active flow directions [out] epp Plastic-strain increment constraint [out] ic Active internal-parameter constraint active The active constraints.

Definition at line 223 of file MultiPlasticityLinearSystem.C.

Referenced by calculateRHS(), and ComputeMultiPlasticityStress::lineSearch().

233 {
234  // see comments at the start of .h file
235
236  mooseAssert(intnl_old.size() == _num_models,
237  "Size of intnl_old is " << intnl_old.size()
238  << " which is incorrect in calculateConstraints");
239  mooseAssert(intnl.size() == _num_models,
240  "Size of intnl is " << intnl.size() << " which is incorrect in calculateConstraints");
241  mooseAssert(pm.size() == _num_surfaces,
242  "Size of pm is " << pm.size() << " which is incorrect in calculateConstraints");
243  mooseAssert(active.size() == _num_surfaces,
244  "Size of active is " << active.size()
245  << " which is incorrect in calculateConstraints");
246
247  // yield functions
248  yieldFunction(stress, intnl, active, f);
249
250  // flow directions and "epp"
251  flowPotential(stress, intnl, active, r);
252  epp = RankTwoTensor();
253  unsigned ind = 0;
254  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
255  if (active[surface])
256  epp += pm[surface] * r[ind++]; // note, even the deactivated_due_to_ld must get added in
257  epp -= delta_dp;
258
259  // internal constraints
260  std::vector<Real> h;
261  hardPotential(stress, intnl, active, h);
262  ic.resize(0);
263  ind = 0;
264  std::vector<unsigned int> active_surfaces;
265  std::vector<unsigned int>::iterator active_surface;
266  for (unsigned model = 0; model < _num_models; ++model)
267  {
268  activeSurfaces(model, active, active_surfaces);
269  if (active_surfaces.size() > 0)
270  {
271  // some surfaces are active in this model, so must form an internal constraint
272  ic.push_back(intnl[model] - intnl_old[model]);
273  for (active_surface = active_surfaces.begin(); active_surface != active_surfaces.end();
274  ++active_surface)
275  ic[ic.size() - 1] += pm[*active_surface] * h[ind++]; // we know the correct one is h[ind]
276  // since it was constructed in the same
277  // manner
278  }
279  }
280 }
virtual void yieldFunction(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< Real > &f)
The active yield function(s)
unsigned int _num_surfaces
Number of surfaces within the plastic models.
virtual void flowPotential(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &r)
The active flow potential(s) - one for each yield function.
unsigned int _num_models
Number of plastic models for this material.
virtual void hardPotential(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< Real > &h)
The active hardening potentials (one for each internal parameter and for each yield function) by assu...
void activeSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces)
Returns the external surface number(s) of the active surfaces of the given model This may be of size=...
 void MultiPlasticityLinearSystem::calculateJacobian ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< Real > & pm, const RankFourTensor & E_inv, const std::vector< bool > & active, const std::vector< bool > & deactivated_due_to_ld, std::vector< std::vector< Real >> & jac )
protectedvirtual

d(rhs)/d(dof)

Definition at line 362 of file MultiPlasticityLinearSystem.C.

369 {
370  // see comments at the start of .h file
371
372  mooseAssert(intnl.size() == _num_models,
373  "Size of intnl is " << intnl.size() << " which is incorrect in calculateJacobian");
374  mooseAssert(pm.size() == _num_surfaces,
375  "Size of pm is " << pm.size() << " which is incorrect in calculateJacobian");
376  mooseAssert(active.size() == _num_surfaces,
377  "Size of active is " << active.size() << " which is incorrect in calculateJacobian");
378  mooseAssert(deactivated_due_to_ld.size() == _num_surfaces,
379  "Size of deactivated_due_to_ld is " << deactivated_due_to_ld.size()
380  << " which is incorrect in calculateJacobian");
381
382  unsigned ind = 0;
383  unsigned active_surface_ind = 0;
384
385  std::vector<bool> active_surface(_num_surfaces); // active and not deactivated_due_to_ld
386  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
387  active_surface[surface] = (active[surface] && !deactivated_due_to_ld[surface]);
388  unsigned num_active_surface = 0;
389  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
390  if (active_surface[surface])
391  num_active_surface++;
392
393  std::vector<bool> active_model(
394  _num_models); // whether a model has surfaces that are active and not deactivated_due_to_ld
395  for (unsigned model = 0; model < _num_models; ++model)
396  active_model[model] = anyActiveSurfaces(model, active_surface);
397
398  unsigned num_active_model = 0;
399  for (unsigned model = 0; model < _num_models; ++model)
400  if (active_model[model])
401  num_active_model++;
402
403  ind = 0;
404  std::vector<unsigned int> active_model_index(_num_models);
405  for (unsigned model = 0; model < _num_models; ++model)
406  if (active_model[model])
407  active_model_index[model] = ind++;
408  else
409  active_model_index[model] =
410  _num_models + 1; // just a dummy, that will probably cause a crash if something goes wrong
411
412  std::vector<RankTwoTensor> df_dstress;
413  dyieldFunction_dstress(stress, intnl, active_surface, df_dstress);
414
415  std::vector<Real> df_dintnl;
416  dyieldFunction_dintnl(stress, intnl, active_surface, df_dintnl);
417
418  std::vector<RankTwoTensor> r;
419  flowPotential(stress, intnl, active, r);
420
421  std::vector<RankFourTensor> dr_dstress;
422  dflowPotential_dstress(stress, intnl, active, dr_dstress);
423
424  std::vector<RankTwoTensor> dr_dintnl;
425  dflowPotential_dintnl(stress, intnl, active, dr_dintnl);
426
427  std::vector<Real> h;
428  hardPotential(stress, intnl, active, h);
429
430  std::vector<RankTwoTensor> dh_dstress;
431  dhardPotential_dstress(stress, intnl, active, dh_dstress);
432
433  std::vector<Real> dh_dintnl;
434  dhardPotential_dintnl(stress, intnl, active, dh_dintnl);
435
436  // d(epp)/dstress = sum_{active alpha} pm[alpha]*dr_dstress
437  RankFourTensor depp_dstress;
438  ind = 0;
439  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
440  if (active[surface]) // includes deactivated_due_to_ld
441  depp_dstress += pm[surface] * dr_dstress[ind++];
442  depp_dstress += E_inv;
443
444  // d(epp)/dpm_{active_surface_index} = r_{active_surface_index}
445  std::vector<RankTwoTensor> depp_dpm;
446  depp_dpm.resize(num_active_surface);
447  ind = 0;
448  active_surface_ind = 0;
449  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
450  {
451  if (active[surface])
452  {
453  if (active_surface[surface]) // do not include the deactived_due_to_ld, since their pm are not
454  // dofs in the NR
455  depp_dpm[active_surface_ind++] = r[ind];
456  ind++;
457  }
458  }
459
460  // d(epp)/dintnl_{active_model_index} = sum(pm[asdf]*dr_dintnl[fdsa])
461  std::vector<RankTwoTensor> depp_dintnl;
462  depp_dintnl.assign(num_active_model, RankTwoTensor());
463  ind = 0;
464  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
465  {
466  if (active[surface])
467  {
468  unsigned int model_num = modelNumber(surface);
469  if (active_model[model_num]) // only include models with surfaces which are still active after
470  // deactivated_due_to_ld
471  depp_dintnl[active_model_index[model_num]] += pm[surface] * dr_dintnl[ind];
472  ind++;
473  }
474  }
475
476  // df_dstress has been calculated above
477  // df_dpm is always zero
478  // df_dintnl has been calculated above, but only the active_surface+active_model stuff needs to be
479  // included in Jacobian: see below
480
481  std::vector<RankTwoTensor> dic_dstress;
482  dic_dstress.assign(num_active_model, RankTwoTensor());
483  ind = 0;
484  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
485  {
486  if (active[surface])
487  {
488  unsigned int model_num = modelNumber(surface);
489  if (active_model[model_num]) // only include ic for models with active_surface (ie, if model
490  // only contains deactivated_due_to_ld don't include it)
491  dic_dstress[active_model_index[model_num]] += pm[surface] * dh_dstress[ind];
492  ind++;
493  }
494  }
495
496  std::vector<std::vector<Real>> dic_dpm;
497  dic_dpm.resize(num_active_model);
498  ind = 0;
499  active_surface_ind = 0;
500  for (unsigned model = 0; model < num_active_model; ++model)
501  dic_dpm[model].assign(num_active_surface, 0);
502  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
503  {
504  if (active[surface])
505  {
506  if (active_surface[surface]) // only take derivs wrt active-but-not-deactivated_due_to_ld pm
507  {
508  unsigned int model_num = modelNumber(surface);
509  // if (active_model[model_num]) // do not need this check as if the surface has
510  // active_surface, the model must be deemed active!
511  dic_dpm[active_model_index[model_num]][active_surface_ind] = h[ind];
512  active_surface_ind++;
513  }
514  ind++;
515  }
516  }
517
518  std::vector<std::vector<Real>> dic_dintnl;
519  dic_dintnl.resize(num_active_model);
520  for (unsigned model = 0; model < num_active_model; ++model)
521  {
522  dic_dintnl[model].assign(num_active_model, 0);
523  dic_dintnl[model][model] = 1; // deriv wrt internal parameter
524  }
525  ind = 0;
526  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
527  {
528  if (active[surface])
529  {
530  unsigned int model_num = modelNumber(surface);
531  if (active_model[model_num]) // only the models that contain surfaces that are still active
532  // after deactivation_due_to_ld
533  dic_dintnl[active_model_index[model_num]][active_model_index[model_num]] +=
534  pm[surface] * dh_dintnl[ind];
535  ind++;
536  }
537  }
538
539  unsigned int dim = 3;
540  unsigned int system_size =
541  6 + num_active_surface + num_active_model; // "6" comes from symmeterizing epp
542  jac.resize(system_size);
543  for (unsigned i = 0; i < system_size; ++i)
544  jac[i].assign(system_size, 0);
545
546  unsigned int row_num = 0;
547  unsigned int col_num = 0;
548  for (unsigned i = 0; i < dim; ++i)
549  for (unsigned j = 0; j <= i; ++j)
550  {
551  for (unsigned k = 0; k < dim; ++k)
552  for (unsigned l = 0; l <= k; ++l)
553  jac[col_num][row_num++] =
554  depp_dstress(i, j, k, l) +
555  (k != l ? depp_dstress(i, j, l, k)
556  : 0); // extra part is needed because i assume dstress(i, j) = dstress(j, i)
557  for (unsigned surface = 0; surface < num_active_surface; ++surface)
558  jac[col_num][row_num++] = depp_dpm[surface](i, j);
559  for (unsigned a = 0; a < num_active_model; ++a)
560  jac[col_num][row_num++] = depp_dintnl[a](i, j);
561  row_num = 0;
562  col_num++;
563  }
564
565  ind = 0;
566  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
567  if (active_surface[surface])
568  {
569  for (unsigned k = 0; k < dim; ++k)
570  for (unsigned l = 0; l <= k; ++l)
571  jac[col_num][row_num++] =
572  df_dstress[ind](k, l) +
573  (k != l ? df_dstress[ind](l, k)
574  : 0); // extra part is needed because i assume dstress(i, j) = dstress(j, i)
575  for (unsigned beta = 0; beta < num_active_surface; ++beta)
576  jac[col_num][row_num++] = 0; // df_dpm
577  for (unsigned model = 0; model < _num_models; ++model)
578  if (active_model[model]) // only use df_dintnl for models in active_model
579  {
580  if (modelNumber(surface) == model)
581  jac[col_num][row_num++] = df_dintnl[ind];
582  else
583  jac[col_num][row_num++] = 0;
584  }
585  ind++;
586  row_num = 0;
587  col_num++;
588  }
589
590  for (unsigned a = 0; a < num_active_model; ++a)
591  {
592  for (unsigned k = 0; k < dim; ++k)
593  for (unsigned l = 0; l <= k; ++l)
594  jac[col_num][row_num++] =
595  dic_dstress[a](k, l) +
596  (k != l ? dic_dstress[a](l, k)
597  : 0); // extra part is needed because i assume dstress(i, j) = dstress(j, i)
598  for (unsigned alpha = 0; alpha < num_active_surface; ++alpha)
599  jac[col_num][row_num++] = dic_dpm[a][alpha];
600  for (unsigned b = 0; b < num_active_model; ++b)
601  jac[col_num][row_num++] = dic_dintnl[a][b];
602  row_num = 0;
603  col_num++;
604  }
605
606  mooseAssert(col_num == system_size, "Incorrect filling of cols in Jacobian");
607 }
virtual void dyieldFunction_dstress(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &df_dstress)
The derivative of the active yield function(s) with respect to stress.
unsigned int modelNumber(unsigned int surface)
returns the model number, given the surface number
virtual void dhardPotential_dintnl(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< Real > &dh_dintnl)
The derivative of the active hardening potentials with respect to the active internal parameters...
virtual void dhardPotential_dstress(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &dh_dstress)
The derivative of the active hardening potentials with respect to stress By assumption in the Userobj...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
virtual void dflowPotential_dintnl(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &dr_dintnl)
The derivative of the active flow potentials with respect to the active internal parameters The UserO...
bool anyActiveSurfaces(int model, const std::vector< bool > &active)
returns true if any internal surfaces of the given model are active according to &#39;active&#39; ...
virtual void flowPotential(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &r)
The active flow potential(s) - one for each yield function.
unsigned int _num_models
Number of plastic models for this material.
virtual void dflowPotential_dstress(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankFourTensor > &dr_dstress)
The derivative of the active flow potential(s) with respect to stress.
virtual void hardPotential(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< Real > &h)
The active hardening potentials (one for each internal parameter and for each yield function) by assu...
virtual void dyieldFunction_dintnl(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< Real > &df_dintnl)
The derivative of active yield function(s) with respect to their internal parameters (the user object...
 void MultiPlasticityLinearSystem::calculateRHS ( const RankTwoTensor & stress, const std::vector< Real > & intnl_old, const std::vector< Real > & intnl, const std::vector< Real > & pm, const RankTwoTensor & delta_dp, std::vector< Real > & rhs, const std::vector< bool > & active, bool eliminate_ld, std::vector< bool > & deactivated_due_to_ld )
protectedvirtual

Calculate the RHS which is rhs = -(epp(0,0), epp(1,0), epp(1,1), epp(2,0), epp(2,1), epp(2,2), f[0], f[1], ..., f[num_f], ic[0], ic[1], ..., ic[num_ic])

Note that the 'epp' components only contain the upper diagonal. These contain flow directions and plasticity-multipliers for all active surfaces, even the deactivated_due_to_ld surfaces. Note that the 'f' components only contain the active and not deactivated_due_to_ld surfaces Note that the 'ic' components only contain the internal constraints for models which contain active and not deactivated_due_to_ld surfaces. They contain hardening-potentials and plasticity-multipliers for the active surfaces, even the deactivated_due_to_ld surfaces

Parameters
 stress The stress intnl_old old values of the internal parameters intnl internal parameters pm Current value(s) of the plasticity multiplier(s) (consistency parameters) delta_dp Change in plastic strain incurred so far during the return [out] rhs the rhs active The active constraints. eliminate_ld Check for linear dependence of constraints and put the results into deactivated_due_to_ld. Usually this should be true, but for certain debug operations it should be false [out] deactivated_due_to_ld constraints deactivated due to linear-dependence of flow directions

Definition at line 283 of file MultiPlasticityLinearSystem.C.

292 {
293  // see comments at the start of .h file
294
295  mooseAssert(intnl_old.size() == _num_models,
296  "Size of intnl_old is " << intnl_old.size() << " which is incorrect in calculateRHS");
297  mooseAssert(intnl.size() == _num_models,
298  "Size of intnl is " << intnl.size() << " which is incorrect in calculateRHS");
299  mooseAssert(pm.size() == _num_surfaces,
300  "Size of pm is " << pm.size() << " which is incorrect in calculateRHS");
301  mooseAssert(active.size() == _num_surfaces,
302  "Size of active is " << active.size() << " which is incorrect in calculateRHS");
303
304  std::vector<Real> f; // the yield functions
305  RankTwoTensor epp; // the plastic-strain constraint ("direction constraint")
306  std::vector<Real> ic; // the "internal constraints"
307
308  std::vector<RankTwoTensor> r;
309  calculateConstraints(stress, intnl_old, intnl, pm, delta_dp, f, r, epp, ic, active);
310
311  if (eliminate_ld)
312  eliminateLinearDependence(stress, intnl, f, r, active, deactivated_due_to_ld);
313  else
314  deactivated_due_to_ld.assign(_num_surfaces, false);
315
316  std::vector<bool> active_not_deact(_num_surfaces);
317  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
318  active_not_deact[surface] = (active[surface] && !deactivated_due_to_ld[surface]);
319
320  unsigned num_active_f = 0;
321  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
322  if (active_not_deact[surface])
323  num_active_f++;
324
325  unsigned num_active_ic = 0;
326  for (unsigned model = 0; model < _num_models; ++model)
327  if (anyActiveSurfaces(model, active_not_deact))
328  num_active_ic++;
329
330  unsigned int dim = 3;
331  unsigned int system_size = 6 + num_active_f + num_active_ic; // "6" comes from symmeterizing epp,
332  // num_active_f comes from "f",
333  // num_active_f comes from "ic"
334
335  rhs.resize(system_size);
336
337  unsigned ind = 0;
338  for (unsigned i = 0; i < dim; ++i)
339  for (unsigned j = 0; j <= i; ++j)
340  rhs[ind++] = -epp(i, j);
341  unsigned active_surface = 0;
342  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
343  if (active[surface])
344  {
345  if (!deactivated_due_to_ld[surface])
346  rhs[ind++] = -f[active_surface];
347  active_surface++;
348  }
349  unsigned active_model = 0;
350  for (unsigned model = 0; model < _num_models; ++model)
351  if (anyActiveSurfaces(model, active))
352  {
353  if (anyActiveSurfaces(model, active_not_deact))
354  rhs[ind++] = -ic[active_model];
355  active_model++;
356  }
357
358  mooseAssert(ind == system_size, "Incorrect filling of the rhs in calculateRHS");
359 }
virtual void eliminateLinearDependence(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< Real > &f, const std::vector< RankTwoTensor > &r, const std::vector< bool > &active, std::vector< bool > &deactivated_due_to_ld)
Performs a number of singular-value decompositions to check for linear-dependence of the active direc...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
bool anyActiveSurfaces(int model, const std::vector< bool > &active)
returns true if any internal surfaces of the given model are active according to &#39;active&#39; ...
unsigned int _num_models
Number of plastic models for this material.
virtual void calculateConstraints(const RankTwoTensor &stress, const std::vector< Real > &intnl_old, const std::vector< Real > &intnl, const std::vector< Real > &pm, const RankTwoTensor &delta_dp, std::vector< Real > &f, std::vector< RankTwoTensor > &r, RankTwoTensor &epp, std::vector< Real > &ic, const std::vector< bool > &active)
The constraints.
 void MultiPlasticityRawComponentAssembler::dflowPotential_dintnl ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< bool > & active, std::vector< RankTwoTensor > & dr_dintnl )
protectedvirtualinherited

The derivative of the active flow potentials with respect to the active internal parameters The UserObjects explicitly assume that r[alpha] is only dependent on intnl[alpha].

Parameters
 stress the stress at which to calculate the flow potential intnl vector of internal parameters active set of active constraints - only the active derivatives are put into "dr_dintnl" [out] dr_dintnl the derivatives. dr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl[alpha]

Definition at line 230 of file MultiPlasticityRawComponentAssembler.C.

234 {
235  mooseAssert(intnl.size() == _num_models, "Incorrect size of internal parameters");
236  mooseAssert(active.size() == _num_surfaces, "Incorrect size of active");
237
238  dr_dintnl.resize(0);
239  std::vector<unsigned int> active_surfaces_of_model;
240  std::vector<unsigned int>::iterator active_surface;
241  std::vector<RankTwoTensor> model_dr_dintnl;
242  for (unsigned model = 0; model < _num_models; ++model)
243  {
244  activeModelSurfaces(model, active, active_surfaces_of_model);
245  if (active_surfaces_of_model.size() > 0)
246  {
247  _f[model]->dflowPotential_dintnlV(stress, intnl[model], model_dr_dintnl);
248  for (active_surface = active_surfaces_of_model.begin();
249  active_surface != active_surfaces_of_model.end();
250  ++active_surface)
251  dr_dintnl.push_back(model_dr_dintnl[*active_surface]);
252  }
253  }
254 }
void activeModelSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 void MultiPlasticityRawComponentAssembler::dflowPotential_dstress ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< bool > & active, std::vector< RankFourTensor > & dr_dstress )
protectedvirtualinherited

The derivative of the active flow potential(s) with respect to stress.

Parameters
 stress the stress at which to calculate the flow potential intnl vector of internal parameters active set of active constraints - only the active derivatives are put into "dr_dstress" [out] dr_dstress the derivative. dr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Definition at line 202 of file MultiPlasticityRawComponentAssembler.C.

207 {
208  mooseAssert(intnl.size() == _num_models, "Incorrect size of internal parameters");
209  mooseAssert(active.size() == _num_surfaces, "Incorrect size of active");
210
211  dr_dstress.resize(0);
212  std::vector<unsigned int> active_surfaces_of_model;
213  std::vector<unsigned int>::iterator active_surface;
214  std::vector<RankFourTensor> model_dr_dstress;
215  for (unsigned model = 0; model < _num_models; ++model)
216  {
217  activeModelSurfaces(model, active, active_surfaces_of_model);
218  if (active_surfaces_of_model.size() > 0)
219  {
220  _f[model]->dflowPotential_dstressV(stress, intnl[model], model_dr_dstress);
221  for (active_surface = active_surfaces_of_model.begin();
222  active_surface != active_surfaces_of_model.end();
223  ++active_surface)
224  dr_dstress.push_back(model_dr_dstress[*active_surface]);
225  }
226  }
227 }
void activeModelSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 void MultiPlasticityRawComponentAssembler::dhardPotential_dintnl ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< bool > & active, std::vector< Real > & dh_dintnl )
protectedvirtualinherited

The derivative of the active hardening potentials with respect to the active internal parameters.

Parameters
 stress the stress at which to calculate the hardening potentials intnl vector of internal parameters active set of active constraints - only the active derivatives are put into "dh_dintnl" [out] dh_dintnl the derivatives. dh_dintnl[a][alpha][b] = dh[a][alpha]/dintnl[b]. Note that the userobjects assume that there is exactly one internal parameter per yield function, so the derivative is only nonzero for a=alpha=b, so that is all we calculate

Definition at line 312 of file MultiPlasticityRawComponentAssembler.C.

Referenced by calculateJacobian().

316 {
317  mooseAssert(intnl.size() == _num_models, "Incorrect size of internal parameters");
318  mooseAssert(active.size() == _num_surfaces, "Incorrect size of active");
319
320  dh_dintnl.resize(0);
321  std::vector<unsigned int> active_surfaces_of_model;
322  std::vector<unsigned int>::iterator active_surface;
323  std::vector<Real> model_dh_dintnl;
324  for (unsigned model = 0; model < _num_models; ++model)
325  {
326  activeModelSurfaces(model, active, active_surfaces_of_model);
327  if (active_surfaces_of_model.size() > 0)
328  {
329  _f[model]->dhardPotential_dintnlV(stress, intnl[model], model_dh_dintnl);
330  for (active_surface = active_surfaces_of_model.begin();
331  active_surface != active_surfaces_of_model.end();
332  ++active_surface)
333  dh_dintnl.push_back(model_dh_dintnl[*active_surface]);
334  }
335  }
336 }
void activeModelSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 void MultiPlasticityRawComponentAssembler::dhardPotential_dstress ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< bool > & active, std::vector< RankTwoTensor > & dh_dstress )
protectedvirtualinherited

The derivative of the active hardening potentials with respect to stress By assumption in the Userobjects, the h[a][alpha] is nonzero only for a = alpha, so we only calculate those here.

Parameters
 stress the stress at which to calculate the hardening potentials intnl vector of internal parameters active set of active constraints - only the active derivatives are put into "dh_dstress" [out] dh_dstress the derivative. dh_dstress[a](i, j) = dh[a]/dstress(k, l)

Definition at line 284 of file MultiPlasticityRawComponentAssembler.C.

Referenced by calculateJacobian().

289 {
290  mooseAssert(intnl.size() == _num_models, "Incorrect size of internal parameters");
291  mooseAssert(active.size() == _num_surfaces, "Incorrect size of active");
292
293  dh_dstress.resize(0);
294  std::vector<unsigned int> active_surfaces_of_model;
295  std::vector<unsigned int>::iterator active_surface;
296  std::vector<RankTwoTensor> model_dh_dstress;
297  for (unsigned model = 0; model < _num_models; ++model)
298  {
299  activeModelSurfaces(model, active, active_surfaces_of_model);
300  if (active_surfaces_of_model.size() > 0)
301  {
302  _f[model]->dhardPotential_dstressV(stress, intnl[model], model_dh_dstress);
303  for (active_surface = active_surfaces_of_model.begin();
304  active_surface != active_surfaces_of_model.end();
305  ++active_surface)
306  dh_dstress.push_back(model_dh_dstress[*active_surface]);
307  }
308  }
309 }
void activeModelSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 void MultiPlasticityRawComponentAssembler::dyieldFunction_dintnl ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< bool > & active, std::vector< Real > & df_dintnl )
protectedvirtualinherited

The derivative of active yield function(s) with respect to their internal parameters (the user objects assume there is exactly one internal param per yield function)

Parameters
 stress the stress at which to calculate the yield function intnl vector of internal parameters active set of active constraints - only the active derivatives are put into "df_dintnl" [out] df_dintnl the derivatives. df_dstress[alpha] = dyieldFunction[alpha]/dintnl[alpha]

Definition at line 148 of file MultiPlasticityRawComponentAssembler.C.

152 {
153  mooseAssert(intnl.size() == _num_models, "Incorrect size of internal parameters");
154  mooseAssert(active.size() == _num_surfaces, "Incorrect size of active");
155
156  df_dintnl.resize(0);
157  std::vector<unsigned int> active_surfaces_of_model;
158  std::vector<unsigned int>::iterator active_surface;
159  std::vector<Real> model_df_dintnl;
160  for (unsigned model = 0; model < _num_models; ++model)
161  {
162  activeModelSurfaces(model, active, active_surfaces_of_model);
163  if (active_surfaces_of_model.size() > 0)
164  {
165  _f[model]->dyieldFunction_dintnlV(stress, intnl[model], model_df_dintnl);
166  for (active_surface = active_surfaces_of_model.begin();
167  active_surface != active_surfaces_of_model.end();
168  ++active_surface)
169  df_dintnl.push_back(model_df_dintnl[*active_surface]);
170  }
171  }
172 }
void activeModelSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 void MultiPlasticityRawComponentAssembler::dyieldFunction_dstress ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< bool > & active, std::vector< RankTwoTensor > & df_dstress )
protectedvirtualinherited

The derivative of the active yield function(s) with respect to stress.

Parameters
 stress the stress at which to calculate the yield function intnl vector of internal parameters active set of active constraints - only the active derivatives are put into "df_dstress" [out] df_dstress the derivative (or derivatives in the case of multisurface plasticity). df_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Definition at line 120 of file MultiPlasticityRawComponentAssembler.C.

125 {
126  mooseAssert(intnl.size() == _num_models, "Incorrect size of internal parameters");
127  mooseAssert(active.size() == _num_surfaces, "Incorrect size of active");
128
129  df_dstress.resize(0);
130  std::vector<unsigned int> active_surfaces_of_model;
131  std::vector<unsigned int>::iterator active_surface;
132  std::vector<RankTwoTensor> model_df_dstress;
133  for (unsigned model = 0; model < _num_models; ++model)
134  {
135  activeModelSurfaces(model, active, active_surfaces_of_model);
136  if (active_surfaces_of_model.size() > 0)
137  {
138  _f[model]->dyieldFunction_dstressV(stress, intnl[model], model_df_dstress);
139  for (active_surface = active_surfaces_of_model.begin();
140  active_surface != active_surfaces_of_model.end();
141  ++active_surface)
142  df_dstress.push_back(model_df_dstress[*active_surface]);
143  }
144  }
145 }
void activeModelSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 void MultiPlasticityLinearSystem::eliminateLinearDependence ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< Real > & f, const std::vector< RankTwoTensor > & r, const std::vector< bool > & active, std::vector< bool > & deactivated_due_to_ld )
privatevirtual

Performs a number of singular-value decompositions to check for linear-dependence of the active directions "r" If linear dependence is found, then deactivated_due_to_ld will contain 'true' entries where surfaces need to be deactivated_due_to_ld.

Parameters
 stress the current stress intnl the current values of internal parameters f Active yield function values r the flow directions that for those yield functions that are active upon entry to this function active true if active [out] deactivated_due_to_ld Yield functions deactivated due to linearly-dependent flow directions

Definition at line 102 of file MultiPlasticityLinearSystem.C.

Referenced by calculateRHS().

108 {
109  deactivated_due_to_ld.resize(_num_surfaces, false);
110
111  unsigned num_active = r.size();
112
113  if (num_active <= 1)
114  return;
115
116  std::vector<double> s;
117  int info = singularValuesOfR(r, s);
118  if (info != 0)
119  mooseError("In finding the SVD in the return-map algorithm, the PETSC LAPACK gesvd routine "
120  "returned with error code ",
121  info);
122
123  // num_lin_dep are the number of linearly dependent
124  // "r vectors", if num_active <= 6
125  unsigned int num_lin_dep = 0;
126
127  unsigned i = s.size();
128  while (i-- > 0)
129  if (s[i] < _svd_tol * s[0])
130  num_lin_dep++;
131  else
132  break;
133
134  if (num_lin_dep == 0 && num_active <= 6)
135  return;
136
137  // From here on, some flow directions are linearly dependent
138
139  // Find the signed "distance" of the current (stress, internal) configuration
140  // from the yield surfaces. This distance will not be precise, but
141  // i want to preferentially deactivate yield surfaces that are close
142  // to the current stress point.
143  std::vector<RankTwoTensor> df_dstress;
144  dyieldFunction_dstress(stress, intnl, active, df_dstress);
145
146  typedef std::pair<Real, unsigned> pair_for_sorting;
147  std::vector<pair_for_sorting> dist(num_active);
148  for (unsigned i = 0; i < num_active; ++i)
149  {
150  dist[i].first = f[i] / df_dstress[i].L2norm();
151  dist[i].second = i;
152  }
153  std::sort(dist.begin(), dist.end()); // sorted in ascending order
154
155  // There is a potential problem when we have equal f[i], for it can give oscillations
156  bool equals_detected = false;
157  for (unsigned i = 0; i < num_active - 1; ++i)
158  if (std::abs(dist[i].first - dist[i + 1].first) < _min_f_tol)
159  {
160  equals_detected = true;
161  dist[i].first += _min_f_tol * (MooseRandom::rand() - 0.5);
162  }
163  if (equals_detected)
164  std::sort(dist.begin(), dist.end()); // sorted in ascending order
165
166  std::vector<bool> scheduled_for_deactivation;
167  scheduled_for_deactivation.assign(num_active, false);
168
169  // In the following loop we go through all the flow directions, from
170  // the one with the largest dist, to the one with the smallest dist,
171  // adding them one-by-one into r_tmp. Upon each addition we check
172  // for linear-dependence. if LD is found, we schedule the most
173  // recently added flow direction for deactivation, and pop it
174  // back off r_tmp
175  unsigned current_yf;
176  current_yf = dist[num_active - 1].second;
177  // the one with largest dist
178  std::vector<RankTwoTensor> r_tmp = {r[current_yf]};
179
180  unsigned num_kept_active = 1;
181  for (unsigned yf_to_try = 2; yf_to_try <= num_active; ++yf_to_try)
182  {
183  current_yf = dist[num_active - yf_to_try].second;
184  if (num_active == 2) // shortcut to we don't have to singularValuesOfR
185  scheduled_for_deactivation[current_yf] = true;
186  else if (num_kept_active >= 6) // shortcut to we don't have to singularValuesOfR: there can
187  // never be > 6 linearly-independent r vectors
188  scheduled_for_deactivation[current_yf] = true;
189  else
190  {
191  r_tmp.push_back(r[current_yf]);
192  info = singularValuesOfR(r_tmp, s);
193  if (info != 0)
194  mooseError("In finding the SVD in the return-map algorithm, the PETSC LAPACK gesvd routine "
195  "returned with error code ",
196  info);
197  if (s[s.size() - 1] < _svd_tol * s[0])
198  {
199  scheduled_for_deactivation[current_yf] = true;
200  r_tmp.pop_back();
201  num_lin_dep--;
202  }
203  else
204  num_kept_active++;
205  if (num_lin_dep == 0 && num_active <= 6)
206  // have taken out all the vectors that were linearly dependent
207  // so no point continuing
208  break;
209  }
210  }
211
212  unsigned int old_active_number = 0;
213  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
214  if (active[surface])
215  {
216  if (scheduled_for_deactivation[old_active_number])
217  deactivated_due_to_ld[surface] = true;
218  old_active_number++;
219  }
220 }
virtual int singularValuesOfR(const std::vector< RankTwoTensor > &r, std::vector< Real > &s)
Performs a singular-value decomposition of r and returns the singular values.
virtual void dyieldFunction_dstress(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< bool > &active, std::vector< RankTwoTensor > &df_dstress)
The derivative of the active yield function(s) with respect to stress.
Real _svd_tol
Tolerance on the minimum ratio of singular values before flow-directions are deemed linearly dependen...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
Real _min_f_tol
Minimum value of the _f_tol parameters for the Yield Function User Objects.
 void MultiPlasticityRawComponentAssembler::flowPotential ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< bool > & active, std::vector< RankTwoTensor > & r )
protectedvirtualinherited

The active flow potential(s) - one for each yield function.

Parameters
 stress the stress at which to calculate the flow potential intnl vector of internal parameters active set of active constraints - only the active flow potentials are put into "r" [out] r the flow potential (flow potentials in the multi-surface case)

Definition at line 175 of file MultiPlasticityRawComponentAssembler.C.

179 {
180  mooseAssert(intnl.size() == _num_models, "Incorrect size of internal parameters");
181  mooseAssert(active.size() == _num_surfaces, "Incorrect size of active");
182
183  r.resize(0);
184  std::vector<unsigned int> active_surfaces_of_model;
185  std::vector<unsigned int>::iterator active_surface;
186  std::vector<RankTwoTensor> model_r;
187  for (unsigned model = 0; model < _num_models; ++model)
188  {
189  activeModelSurfaces(model, active, active_surfaces_of_model);
190  if (active_surfaces_of_model.size() > 0)
191  {
192  _f[model]->flowPotentialV(stress, intnl[model], model_r);
193  for (active_surface = active_surfaces_of_model.begin();
194  active_surface != active_surfaces_of_model.end();
195  ++active_surface)
196  r.push_back(model_r[*active_surface]);
197  }
198  }
199 }
void activeModelSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 void MultiPlasticityRawComponentAssembler::hardPotential ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< bool > & active, std::vector< Real > & h )
protectedvirtualinherited

The active hardening potentials (one for each internal parameter and for each yield function) by assumption in the Userobjects, the h[a][alpha] is nonzero only if the surface alpha is part of model a, so we only calculate those here.

Parameters
 stress the stress at which to calculate the hardening potential intnl vector of internal parameters active set of active constraints - only the active hardening potentials are put into "h" [out] h the hardening potentials. h[alpha] = hardening potential for yield fcn alpha (and, by the above assumption we know which hardening parameter, a, this belongs to)

Definition at line 257 of file MultiPlasticityRawComponentAssembler.C.

261 {
262  mooseAssert(intnl.size() == _num_models, "Incorrect size of internal parameters");
263  mooseAssert(active.size() == _num_surfaces, "Incorrect size of active");
264
265  h.resize(0);
266  std::vector<unsigned int> active_surfaces_of_model;
267  std::vector<unsigned int>::iterator active_surface;
268  std::vector<Real> model_h;
269  for (unsigned model = 0; model < _num_models; ++model)
270  {
271  activeModelSurfaces(model, active, active_surfaces_of_model);
272  if (active_surfaces_of_model.size() > 0)
273  {
274  _f[model]->hardPotentialV(stress, intnl[model], model_h);
275  for (active_surface = active_surfaces_of_model.begin();
276  active_surface != active_surfaces_of_model.end();
277  ++active_surface)
278  h.push_back(model_h[*active_surface]);
279  }
280  }
281 }
void activeModelSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 unsigned int MultiPlasticityRawComponentAssembler::modelNumber ( unsigned int surface )
protectedinherited

returns the model number, given the surface number

Definition at line 783 of file MultiPlasticityRawComponentAssembler.C.

784 {
785  return _model_given_surface[surface];
786 }
std::vector< unsigned int > _model_given_surface
given a surface number, this returns the model number
 void MultiPlasticityLinearSystem::nrStep ( const RankTwoTensor & stress, const std::vector< Real > & intnl_old, const std::vector< Real > & intnl, const std::vector< Real > & pm, const RankFourTensor & E_inv, const RankTwoTensor & delta_dp, RankTwoTensor & dstress, std::vector< Real > & dpm, std::vector< Real > & dintnl, const std::vector< bool > & active, std::vector< bool > & deactivated_due_to_ld )
protectedvirtual

Performs one Newton-Raphson step.

The purpose here is to find the changes, dstress, dpm and dintnl according to the Newton-Raphson procedure

Parameters
 stress Current value of stress intnl_old The internal variables at the previous "time" step intnl Current value of the internal variables pm Current value of the plasticity multipliers (consistency parameters) E_inv inverse of the elasticity tensor delta_dp Current value of the plastic-strain increment (ie plastic_strain - plastic_strain_old) [out] dstress The change in stress for a full Newton step [out] dpm The change in all plasticity multipliers for a full Newton step [out] dintnl The change in all internal variables for a full Newton step active The active constraints [out] deactivated_due_to_ld The constraints deactivated due to linear-dependence of the flow directions

Definition at line 610 of file MultiPlasticityLinearSystem.C.

621 {
622  // Calculate RHS and Jacobian
623  std::vector<Real> rhs;
624  calculateRHS(stress, intnl_old, intnl, pm, delta_dp, rhs, active, true, deactivated_due_to_ld);
625
626  std::vector<std::vector<Real>> jac;
627  calculateJacobian(stress, intnl, pm, E_inv, active, deactivated_due_to_ld, jac);
628
629  // prepare for LAPACKgesv_ routine provided by PETSc
630  int system_size = rhs.size();
631
632  std::vector<double> a(system_size * system_size);
633  // Fill in the a "matrix" by going down columns
634  unsigned ind = 0;
635  for (int col = 0; col < system_size; ++col)
636  for (int row = 0; row < system_size; ++row)
637  a[ind++] = jac[row][col];
638
639  int nrhs = 1;
640  std::vector<int> ipiv(system_size);
641  int info;
642  LAPACKgesv_(&system_size, &nrhs, &a[0], &system_size, &ipiv[0], &rhs[0], &system_size, &info);
643
644  if (info != 0)
645  mooseError("In solving the linear system in a Newton-Raphson process, the PETSC LAPACK gsev "
646  "routine returned with error code ",
647  info);
648
649  // Extract the results back to dstress, dpm and dintnl
650  std::vector<bool> active_not_deact(_num_surfaces);
651  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
652  active_not_deact[surface] = (active[surface] && !deactivated_due_to_ld[surface]);
653
654  unsigned int dim = 3;
655  ind = 0;
656
657  for (unsigned i = 0; i < dim; ++i)
658  for (unsigned j = 0; j <= i; ++j)
659  dstress(i, j) = dstress(j, i) = rhs[ind++];
660  dpm.assign(_num_surfaces, 0);
661  for (unsigned surface = 0; surface < _num_surfaces; ++surface)
662  if (active_not_deact[surface])
663  dpm[surface] = rhs[ind++];
664  dintnl.assign(_num_models, 0);
665  for (unsigned model = 0; model < _num_models; ++model)
666  if (anyActiveSurfaces(model, active_not_deact))
667  dintnl[model] = rhs[ind++];
668
669  mooseAssert(static_cast<int>(ind) == system_size,
670  "Incorrect extracting of changes from NR solution in nrStep");
671 }
virtual void calculateRHS(const RankTwoTensor &stress, const std::vector< Real > &intnl_old, const std::vector< Real > &intnl, const std::vector< Real > &pm, const RankTwoTensor &delta_dp, std::vector< Real > &rhs, const std::vector< bool > &active, bool eliminate_ld, std::vector< bool > &deactivated_due_to_ld)
Calculate the RHS which is rhs = -(epp(0,0), epp(1,0), epp(1,1), epp(2,0), epp(2,1), epp(2,2), f[0], f[1], ..., f[num_f], ic[0], ic[1], ..., ic[num_ic])
virtual void calculateJacobian(const RankTwoTensor &stress, const std::vector< Real > &intnl, const std::vector< Real > &pm, const RankFourTensor &E_inv, const std::vector< bool > &active, const std::vector< bool > &deactivated_due_to_ld, std::vector< std::vector< Real >> &jac)
d(rhs)/d(dof)
unsigned int _num_surfaces
Number of surfaces within the plastic models.
bool anyActiveSurfaces(int model, const std::vector< bool > &active)
returns true if any internal surfaces of the given model are active according to &#39;active&#39; ...
unsigned int _num_models
Number of plastic models for this material.
 bool MultiPlasticityRawComponentAssembler::returnMapAll ( const RankTwoTensor & trial_stress, const std::vector< Real > & intnl_old, const RankFourTensor & E_ijkl, Real ep_plastic_tolerance, RankTwoTensor & stress, std::vector< Real > & intnl, std::vector< Real > & pm, std::vector< Real > & cumulative_pm, RankTwoTensor & delta_dp, std::vector< Real > & yf, unsigned & num_successful_plastic_returns, unsigned & custom_model )
protectedinherited

Performs a returnMap for each plastic model using their inbuilt returnMap functions.

Performs a returnMap for each plastic model.

This may be used to quickly ascertain whether a (trial_stress, intnl_old) configuration is admissible, or whether a single model's customized returnMap function can provide a solution to the return-map problem, or whether a full Newton-Raphson approach such as implemented in ComputeMultiPlasticityStress is needed.

There are three cases mentioned below: (A) The (trial_stress, intnl_old) configuration is admissible according to all plastic models (B) The (trial_stress, intnl_old) configuration is inadmissible to exactly one plastic model, and that model can successfully use its customized returnMap function to provide a returned (stress, intnl) configuration, and that configuration is admissible according to all plastic models (C) All other cases. This includes customized returnMap functions failing, or more than one plastic_model being inadmissible, etc

Parameters
 trial_stress the trial stress intnl_old the old values of the internal parameters E_ijkl the elasticity tensor ep_plastic_tolerance the tolerance on the plastic strain [out] stress is set to trial_stress in case (A) or (C), and the returned value of stress in case (B). [out] intnl is set to intnl_old in case (A) or (C), and the returned value of intnl in case (B) [out] pm Zero in case (A) or (C), otherwise the plastic multipliers needed to bring about the returnMap in case (B)

Definition at line 597 of file MultiPlasticityRawComponentAssembler.C.

Referenced by ComputeMultiPlasticityStress::quickStep().

609 {
610  mooseAssert(intnl_old.size() == _num_models,
611  "returnMapAll: Incorrect size of internal parameters");
612  mooseAssert(intnl.size() == _num_models, "returnMapAll: Incorrect size of internal parameters");
613  mooseAssert(pm.size() == _num_surfaces, "returnMapAll: Incorrect size of pm");
614
615  num_successful_plastic_returns = 0;
616  yf.resize(0);
617  pm.assign(_num_surfaces, 0.0);
618
619  RankTwoTensor returned_stress; // each model will give a returned_stress. if only one model is
620  // plastically active, i set stress=returned_stress, so as to
621  // record this returned value
622  std::vector<Real> model_f;
623  RankTwoTensor model_delta_dp;
624  std::vector<Real> model_pm;
626  bool successful_return = true;
627  unsigned the_single_plastic_model = 0;
628  bool using_custom_return_map = true;
629
630  // run through all the plastic models, performing their
631  // returnMap algorithms.
632  // If one finds (trial_stress, intnl) inadmissible and
633  // successfully returns, break from the loop to evaluate
634  // all the others at that returned stress
635  for (unsigned model = 0; model < _num_models; ++model)
636  {
637  if (using_custom_return_map)
638  {
639  model_pm.assign(_f[model]->numberSurfaces(), 0.0);
640  bool model_returned = _f[model]->returnMap(trial_stress,
641  intnl_old[model],
642  E_ijkl,
643  ep_plastic_tolerance,
644  returned_stress,
645  intnl[model],
646  model_pm,
647  model_delta_dp,
648  model_f,
651  {
652  // in the elastic zone: record the yield-function values (returned_stress, intnl, model_pm
653  // and model_delta_dp are undefined)
654  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces();
655  ++model_surface)
656  yf.push_back(model_f[model_surface]);
657  }
658  else if (trial_stress_inadmissible && !model_returned)
659  {
660  // in the plastic zone, and the customized returnMap failed
661  // for some reason (or wasn't implemented). The coder
662  // should have correctly returned model_f(trial_stress, intnl_old)
663  // so record them
664  // (returned_stress, intnl, model_pm and model_delta_dp are undefined)
665  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces();
666  ++model_surface)
667  yf.push_back(model_f[model_surface]);
668  // now there's almost zero point in using the custom
669  // returnMap functions
670  using_custom_return_map = false;
671  successful_return = false;
672  }
673  else
674  {
675  // in the plastic zone, and the customized returnMap
676  // succeeded.
677  // record the first returned_stress and delta_dp if everything is going OK
678  // as they could be the actual answer
680  num_successful_plastic_returns++;
681  the_single_plastic_model = model;
682  stress = returned_stress;
683  // note that i break here, and don't push_back
684  // model_f to yf. So now yf contains only the values of
685  // model_f from previous models to the_single_plastic_model
686  // also i don't set delta_dp = model_delta_dp yet, because
687  // i might find problems later on
688  // also, don't increment cumulative_pm for the same reason
689
690  break;
691  }
692  }
693  else
694  {
695  // not using custom returnMap functions because one
696  // has already failed and that one said trial_stress
697  // was inadmissible. So now calculate the yield functions
698  // at the trial stress
699  _f[model]->yieldFunctionV(trial_stress, intnl_old[model], model_f);
700  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces(); ++model_surface)
701  yf.push_back(model_f[model_surface]);
702  }
703  }
704
705  if (num_successful_plastic_returns == 0)
706  {
707  // here either all the models were elastic (successful_return=true),
708  // or some were plastic and either the customized returnMap failed
709  // or wasn't implemented (successful_return=false).
710  // In either case, have to set the following:
711  stress = trial_stress;
712  for (unsigned model = 0; model < _num_models; ++model)
713  intnl[model] = intnl_old[model];
714  return successful_return;
715  }
716
717  // Now we know that num_successful_plastic_returns == 1 and all the other
718  // models (with model number < the_single_plastic_model) must have been
719  // admissible at (trial_stress, intnl). However, all models might
720  // not be admissible at (trial_stress, intnl), so must check that
721  std::vector<Real> yf_at_returned_stress(0);
723  for (unsigned model = 0; model < _num_models; ++model)
724  {
725  if (model == the_single_plastic_model)
726  {
727  // no need to spend time calculating the yield function: we know its admissible
728  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces(); ++model_surface)
729  yf_at_returned_stress.push_back(model_f[model_surface]);
730  continue;
731  }
732  _f[model]->yieldFunctionV(stress, intnl_old[model], model_f);
733  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces(); ++model_surface)
734  {
735  if (model_f[model_surface] > _f[model]->_f_tol)
736  // bummer, this model is not admissible at the returned_stress
738  yf_at_returned_stress.push_back(model_f[model_surface]);
739  }
741  // no point in continuing computing yield functions
742  break;
743  }
744
746  {
747  // we tried using the returned value of stress predicted by
748  // the_single_plastic_model, but it wasn't admissible according
749  // to other plastic models. We need to set:
750  stress = trial_stress;
751  for (unsigned model = 0; model < _num_models; ++model)
752  intnl[model] = intnl_old[model];
753  // and calculate the remainder of the yield functions at trial_stress
754  for (unsigned model = the_single_plastic_model; model < _num_models; ++model)
755  {
756  _f[model]->yieldFunctionV(trial_stress, intnl[model], model_f);
757  for (unsigned model_surface = 0; model_surface < _f[model]->numberSurfaces(); ++model_surface)
758  yf.push_back(model_f[model_surface]);
759  }
760  num_successful_plastic_returns = 0;
761  return false;
762  }
763
764  // So the customized returnMap algorithm can provide a returned
765  // (stress, intnl) configuration, and that is admissible according
766  // to all plastic models
767  yf.resize(0);
768  for (unsigned surface = 0; surface < yf_at_returned_stress.size(); ++surface)
769  yf.push_back(yf_at_returned_stress[surface]);
770  delta_dp = model_delta_dp;
771  for (unsigned model_surface = 0; model_surface < _f[the_single_plastic_model]->numberSurfaces();
772  ++model_surface)
773  {
774  cumulative_pm[_surfaces_given_model[the_single_plastic_model][model_surface]] +=
775  model_pm[model_surface];
776  pm[_surfaces_given_model[the_single_plastic_model][model_surface]] = model_pm[model_surface];
777  }
778  custom_model = the_single_plastic_model;
779  return true;
780 }
std::vector< std::vector< unsigned int > > _surfaces_given_model
_surfaces_given_model[model_number] = vector of surface numbers for this model
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.
 int MultiPlasticityLinearSystem::singularValuesOfR ( const std::vector< RankTwoTensor > & r, std::vector< Real > & s )
privatevirtual

Performs a singular-value decomposition of r and returns the singular values.

Example: If r has size 5 then the singular values of the following matrix are returned: ( r[0](0,0) r[0](0,1) r[0](0,2) r[0](1,1) r[0](1,2) r[0](2,2) ) ( r[1](0,0) r[1](0,1) r[1](0,2) r[1](1,1) r[1](1,2) r[1](2,2) ) a = ( r[2](0,0) r[2](0,1) r[2](0,2) r[2](1,1) r[2](1,2) r[2](2,2) ) ( r[3](0,0) r[3](0,1) r[3](0,2) r[3](1,1) r[3](1,2) r[3](2,2) ) ( r[4](0,0) r[4](0,1) r[4](0,2) r[4](1,1) r[4](1,2) r[4](2,2) )

Parameters
 r The flow directions [out] s The singular values
Returns
The return value from the PETSc LAPACK gesvd reoutine

Definition at line 42 of file MultiPlasticityLinearSystem.C.

Referenced by eliminateLinearDependence().

44 {
45  int bm = r.size();
46  int bn = 6;
47
48  s.resize(std::min(bm, bn));
49
50  // prepare for gesvd or gesdd routine provided by PETSc
51  // Want to find the singular values of matrix
52  // ( r[0](0,0) r[0](0,1) r[0](0,2) r[0](1,1) r[0](1,2) r[0](2,2) )
53  // ( r[1](0,0) r[1](0,1) r[1](0,2) r[1](1,1) r[1](1,2) r[1](2,2) )
54  // a = ( r[2](0,0) r[2](0,1) r[2](0,2) r[2](1,1) r[2](1,2) r[2](2,2) )
55  // ( r[3](0,0) r[3](0,1) r[3](0,2) r[3](1,1) r[3](1,2) r[3](2,2) )
56  // ( r[4](0,0) r[4](0,1) r[4](0,2) r[4](1,1) r[4](1,2) r[4](2,2) )
57  // bm = 5
58
59  std::vector<double> a(bm * 6);
60  // Fill in the a "matrix" by going down columns
61  unsigned ind = 0;
62  for (int col = 0; col < 3; ++col)
63  for (int row = 0; row < bm; ++row)
64  a[ind++] = r[row](0, col);
65  for (int col = 3; col < 5; ++col)
66  for (int row = 0; row < bm; ++row)
67  a[ind++] = r[row](1, col - 2);
68  for (int row = 0; row < bm; ++row)
69  a[ind++] = r[row](2, 2);
70
71  // u and vt are dummy variables because they won't
72  // get referenced due to the "N" and "N" choices
73  int sizeu = 1;
74  std::vector<double> u(sizeu);
75  int sizevt = 1;
76  std::vector<double> vt(sizevt);
77
78  int sizework = 16 * (bm + 6); // this is above the lowerbound specified in the LAPACK doco
79  std::vector<double> work(sizework);
80
81  int info;
82
83  LAPACKgesvd_("N",
84  "N",
85  &bm,
86  &bn,
87  &a[0],
88  &bm,
89  &s[0],
90  &u[0],
91  &sizeu,
92  &vt[0],
93  &sizevt,
94  &work[0],
95  &sizework,
96  &info);
97
98  return info;
99 }
 void MultiPlasticityRawComponentAssembler::yieldFunction ( const RankTwoTensor & stress, const std::vector< Real > & intnl, const std::vector< bool > & active, std::vector< Real > & f )
protectedvirtualinherited

The active yield function(s)

Parameters
 stress the stress at which to calculate the yield function intnl vector of internal parameters active set of active constraints - only the active yield functions are put into "f" [out] f the yield function (or functions in the case of multisurface plasticity)

Definition at line 93 of file MultiPlasticityRawComponentAssembler.C.

97 {
98  mooseAssert(intnl.size() == _num_models, "Incorrect size of internal parameters");
99  mooseAssert(active.size() == _num_surfaces, "Incorrect size of active");
100
101  f.resize(0);
102  std::vector<unsigned int> active_surfaces_of_model;
103  std::vector<unsigned int>::iterator active_surface;
104  std::vector<Real> model_f;
105  for (unsigned model = 0; model < _num_models; ++model)
106  {
107  activeModelSurfaces(model, active, active_surfaces_of_model);
108  if (active_surfaces_of_model.size() > 0)
109  {
110  _f[model]->yieldFunctionV(stress, intnl[model], model_f);
111  for (active_surface = active_surfaces_of_model.begin();
112  active_surface != active_surfaces_of_model.end();
113  ++active_surface)
114  f.push_back(model_f[*active_surface]);
115  }
116  }
117 }
void activeModelSurfaces(int model, const std::vector< bool > &active, std::vector< unsigned int > &active_surfaces_of_model)
Returns the internal surface number(s) of the active surfaces of the given model This may be of size=...
unsigned int _num_surfaces
Number of surfaces within the plastic models.
std::vector< const TensorMechanicsPlasticModel * > _f
User objects that define the yield functions, flow potentials, etc.
unsigned int _num_models
Number of plastic models for this material.

## Member Data Documentation

 Real MultiPlasticityLinearSystem::_min_f_tol
protected

Minimum value of the _f_tol parameters for the Yield Function User Objects.

Definition at line 132 of file MultiPlasticityLinearSystem.h.

Referenced by eliminateLinearDependence(), and MultiPlasticityLinearSystem().

 const InputParameters& MultiPlasticityRawComponentAssembler::_params
protectedinherited

Definition at line 44 of file MultiPlasticityRawComponentAssembler.h.

 MooseEnum MultiPlasticityRawComponentAssembler::_specialIC
protectedinherited

Allows initial set of active constraints to be chosen optimally.

Definition at line 62 of file MultiPlasticityRawComponentAssembler.h.

 std::vector > MultiPlasticityRawComponentAssembler::_surfaces_given_model
protectedinherited

_surfaces_given_model[model_number] = vector of surface numbers for this model

Definition at line 59 of file MultiPlasticityRawComponentAssembler.h.

 Real MultiPlasticityLinearSystem::_svd_tol
protected

Tolerance on the minimum ratio of singular values before flow-directions are deemed linearly dependent.

Definition at line 129 of file MultiPlasticityLinearSystem.h.

Referenced by eliminateLinearDependence().

The documentation for this class was generated from the following files: