libMesh
reduced_basis_ex6.C
Go to the documentation of this file.
1 // The libMesh Finite Element Library.
2 // Copyright (C) 2002-2024 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
3 
4 // This library is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU Lesser General Public
6 // License as published by the Free Software Foundation; either
7 // version 2.1 of the License, or (at your option) any later version.
8 
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // Lesser General Public License for more details.
13 
14 // You should have received a copy of the GNU Lesser General Public
15 // License along with this library; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 
18 // rbOOmit: An implementation of the Certified Reduced Basis method.
19 // Copyright (C) 2009, 2010 David J. Knezevic
20 // This file is part of rbOOmit.
21 
22 
23 
24 // <h1>Reduced Basis: Example 6 - Heat transfer on a curved domain in 3D</h1>
25 // \author David Knezevic
26 // \date 2012
27 //
28 // In this example we consider heat transfer modeled by a Poisson
29 // equation with Robin boundary condition:
30 //
31 // -kappa \Laplacian u = 1, on \Omega
32 // -kappa du\dn = kappa Bi u, on \partial\Omega_Biot,
33 // u = 0 on \partial\Omega_Dirichlet,
34 //
35 // We consider a reference domain \Omega_hat =
36 // [-0.2,0.2]x[-0.2,0.2]x[0,3], and the physical domain is then obtain
37 // via the parametrized mapping:
38 //
39 // x = -1/mu + (1/mu+x_hat)*cos(mu*z_hat)
40 // y = y_hat
41 // z = (1/mu+x_hat)*sin(mu*z_hat)
42 //
43 // for (x_hat,y_hat,z_hat) \in \Omega_hat. (Here "hats" denotes
44 // reference domain.) Also, the "reference Dirichlet boundaries" are
45 // [-0.2,0.2]x[-0.2,0.2]x{0} and [-0.2,0.2]x[-0.2,0.2]x{3}, and the
46 // remaining boundaries are the "Biot" boundaries.
47 //
48 // Then, after putting the PDE into weak form and mapping it to the
49 // reference domain, we obtain:
50 // \kappa \int_\Omega_hat
51 // [ (1+mu*x_hat) v_x w_x + (1+mu*x_hat) v_y w_y + 1/(1+mu*x_hat) v_z w_z ]
52 // + \kappa Bi \int_\partial\Omega_hat_Biot1 (1-0.2mu) u v
53 // + \kappa Bi \int_\partial\Omega_hat_Biot2 (1+mu x_hat) u v
54 // + \kappa Bi \int_\partial\Omega_hat_Biot3 (1+0.2mu) u v
55 // = \int_\Omega_hat (1+mu x_hat) v
56 // where
57 // \partial\Omega_hat_Biot1 = [-0.2] x [-0.2,0.2] x [0,3]
58 // \partial\Omega_hat_Biot2 = [-0.2,0.2] x {-0.2} x [0,3] \UNION [-0.2,0.2] x {0.2} x [0,3]
59 // \partial\Omega_hat_Biot3 = [0.2] x [-0.2,0.2] x [0,3]
60 //
61 // The term
62 // \kappa \int_\Omega_hat 1/(1+mu*x_hat) v_z w_z
63 // is "non-affine" (in the Reduced Basis sense), since we can't
64 // express it in the form \sum theta_q(kappa,mu) a(v,w). As a result,
65 // (as in reduced_basis_ex4) we must employ the Empirical
66 // Interpolation Method (EIM) in order to apply the Reduced Basis
67 // method here.
68 //
69 // The approach we use is to construct an EIM approximation, G_EIM, to
70 // the vector-valued function G(x_hat,y_hat;mu) = (1 + mu*x_hat, 1 +
71 // mu*x_hat, 1/(1+mu*x_hat)) and then we express the "volumetric
72 // integral part" of the left-hand side operator as a(v,w;mu) =
73 // \int_\hat\Omega G_EIM(x_hat,y_hat;mu) \dot (v_x w_x, v_y w_y, v_z
74 // w_z). (We actually only need EIM for the third component of
75 // G_EIM, but it's helpful to demonstrate "vector-valued" EIM here.)
76 
77 // C++ include files that we need
78 #include <iostream>
79 #include <algorithm>
80 #include <cstdlib> // *must* precede <cmath> for proper std:abs() on PGI, Sun Studio CC
81 #include <cmath>
82 #include <set>
83 
84 // Basic include file needed for the mesh functionality.
85 #include "libmesh/libmesh.h"
86 #include "libmesh/mesh.h"
87 #include "libmesh/mesh_generation.h"
88 #include "libmesh/exodusII_io.h"
89 #include "libmesh/equation_systems.h"
90 #include "libmesh/dof_map.h"
91 #include "libmesh/getpot.h"
92 #include "libmesh/elem.h"
93 #include "libmesh/rb_data_serialization.h"
94 #include "libmesh/rb_data_deserialization.h"
95 #include "libmesh/enum_solver_package.h"
96 
97 // local includes
98 #include "rb_classes.h"
99 #include "eim_classes.h"
100 #include "assembly.h"
101 
102 // Bring in everything from the libMesh namespace
103 using namespace libMesh;
104 
105 // Define a function to scale the mesh according to the parameter.
107  Real curvature,
108  const std::string & filename);
109 
110 // The main program.
111 int main (int argc, char ** argv)
112 {
113  // Initialize libMesh.
114  LibMeshInit init (argc, argv);
115 
116  // This example requires a linear solver package.
117  libmesh_example_requires(libMesh::default_solver_package() != INVALID_SOLVER_PACKAGE,
118  "--enable-petsc, --enable-trilinos, or --enable-eigen");
119 
120 #if !defined(LIBMESH_HAVE_XDR)
121  // We need XDR support to write out reduced bases
122  libmesh_example_requires(false, "--enable-xdr");
123 #elif defined(LIBMESH_DEFAULT_SINGLE_PRECISION)
124  // XDR binary support requires double precision
125  libmesh_example_requires(false, "--disable-singleprecision");
126 #elif defined(LIBMESH_DEFAULT_TRIPLE_PRECISION)
127  // I have no idea why long double isn't working here... [RHS]
128  libmesh_example_requires(false, "double precision");
129 #elif defined(LIBMESH_ENABLE_BLOCKED_STORAGE)
130  // This example dies with "New nonzero at (0,2) caused a malloc"
131  // when blocked storage is enabled.
132  libmesh_example_requires(false, "--disable-blocked-storage");
133 #endif
134 
135  // This is a 3D example
136  libmesh_example_requires(3 == LIBMESH_DIM, "3D support");
137 
138  // This example requires libmesh to be configured with both
139  // DirichletBoundary and Cap'n Proto support.
140 #if !defined(LIBMESH_ENABLE_DIRICHLET) || !defined(LIBMESH_HAVE_CAPNPROTO)
141  libmesh_example_requires(false, "--enable-dirichlet --enable-capnp");
142 #else
143 
144  // Parse the input file using GetPot
145  std::string eim_parameters = "eim.in";
146  std::string rb_parameters = "rb.in";
147  std::string main_parameters = "reduced_basis_ex6.in";
148  GetPot infile(main_parameters);
149 
150  unsigned int n_elem_xy = infile("n_elem_xy", 1);
151  unsigned int n_elem_z = infile("n_elem_z", 1);
152 
153  // Read the "online_mode" flag from the command line
154  const int online_mode =
155  libMesh::command_line_next("-online_mode", 0);
156 
157  // Create a mesh, with dimension to be overridden by build_cube, on
158  // the default MPI communicator. We currently have to create a
159  // ReplicatedMesh here due to a reduced_basis regression with
160  // DistributedMesh
161  ReplicatedMesh mesh(init.comm());
162 
164  n_elem_xy, n_elem_xy, n_elem_z,
165  -0.2, 0.2,
166  -0.2, 0.2,
167  0., 3.,
168  HEX8);
169 
170  if (!online_mode)
171  {
172  // First run the Offline stage for the EIM approximation.
173  {
174  libMesh::out << "Perform EIM training" << std::endl << std::endl;
175 
176  // Initialize the EquationSystems object for this mesh and attach
177  // the EIM and RB Construction objects
178  EquationSystems equation_systems (mesh);
179 
180  SimpleEIMConstruction & eim_construction =
181  equation_systems.add_system<SimpleEIMConstruction> ("EIM");
182 
183  // Initialize the data structures for the equation system.
184  equation_systems.init ();
185 
186  // Print out some information about the "truth" discretization
187  mesh.print_info();
188  equation_systems.print_info();
189 
190  // Initialize the EIM RBEvaluation object
191  SimpleEIMEvaluation eim_rb_eval(mesh.comm());
192 
193  // Set the rb_eval objects for the RBConstructions
194  eim_construction.set_rb_eim_evaluation(eim_rb_eval);
195 
196  // Read data from input file and print state
197  eim_construction.process_parameters_file(eim_parameters);
198  eim_construction.print_info();
199 
200  // Perform the EIM Greedy and write out the data
201  eim_construction.initialize_eim_construction();
202  eim_construction.train_eim_approximation();
203 
204  RBDataSerialization::RBEIMEvaluationSerialization rb_eim_eval_writer(eim_rb_eval);
205  rb_eim_eval_writer.write_to_file("rb_eim_eval.bin");
206 
207  // Write out the EIM basis functions
208  eim_rb_eval.write_out_basis_functions("eim_data", /*binary=*/false);
209  }
210 
211  {
212  libMesh::out << std::endl << "Perform RB training" << std::endl << std::endl;
213 
214  // Create an equation systems object.
215  EquationSystems equation_systems (mesh);
216 
217  SimpleEIMConstruction & eim_construction =
218  equation_systems.add_system<SimpleEIMConstruction> ("EIM");
219  SimpleRBConstruction & rb_construction =
220  equation_systems.add_system<SimpleRBConstruction> ("RB");
221 
222  // Initialize the data structures for the equation system.
223  equation_systems.init ();
224 
225  // Print out some information about the "truth" discretization
226  equation_systems.print_info();
227  mesh.print_info();
228 
229  // Initialize the standard RBEvaluation object
230  SimpleRBEvaluation rb_eval(mesh.comm());
231 
232  // Initialize the EIM RBEvaluation object
233  SimpleEIMEvaluation eim_rb_eval(mesh.comm());
234 
235  // Set the rb_eval objects for the RBConstructions
236  eim_construction.set_rb_eim_evaluation(eim_rb_eval);
237  rb_construction.set_rb_evaluation(rb_eval);
238 
239  RBDataDeserialization::RBEIMEvaluationDeserialization rb_eim_eval_reader(eim_rb_eval);
240  rb_eim_eval_reader.read_from_file("rb_eim_eval.bin");
241  eim_rb_eval.read_in_basis_functions(rb_construction, "eim_data", /*binary=*/false);
242 
243  // Read data from input file and print state
244  rb_construction.process_parameters_file(rb_parameters);
245 
246  // attach the EIM theta objects to the RBEvaluation
247  eim_rb_eval.initialize_eim_theta_objects();
248  rb_eval.get_rb_theta_expansion().attach_multiple_A_theta(eim_rb_eval.get_eim_theta_objects());
249 
250  // attach the EIM assembly objects to the RBConstruction
251  eim_construction.initialize_eim_assembly_objects();
252  rb_construction.get_rb_assembly_expansion().attach_multiple_A_assembly(eim_construction.get_eim_assembly_objects());
253 
254  // Print out the state of rb_construction now that the EIM objects have been attached
255  rb_construction.print_info();
256 
257  // Need to initialize _after_ EIM greedy so that
258  // the system knows how many affine terms there are
259  rb_construction.initialize_rb_construction();
260  rb_construction.train_reduced_basis();
261 
262  RBDataSerialization::RBEvaluationSerialization rb_eval_writer(rb_construction.get_rb_evaluation());
263  rb_eval_writer.write_to_file("rb_eval.bin");
264 
265  // Write out the basis functions
266  rb_construction.get_rb_evaluation().write_out_basis_functions(rb_construction,
267  "rb_data");
268  }
269  }
270  else
271  {
272  SimpleEIMEvaluation eim_rb_eval(mesh.comm());
273  SimpleRBEvaluation rb_eval(mesh.comm());
274 
275  RBDataDeserialization::RBEIMEvaluationDeserialization rb_eim_eval_reader(eim_rb_eval);
276  rb_eim_eval_reader.read_from_file("rb_eim_eval.bin");
277 
278  // attach the EIM theta objects to rb_eval objects
279  eim_rb_eval.initialize_eim_theta_objects();
280  rb_eval.get_rb_theta_expansion().attach_multiple_A_theta(eim_rb_eval.get_eim_theta_objects());
281 
283  rb_eval_reader.read_from_file("rb_eval.bin", /*read_error_bound_data*/ true);
284 
285  // Get the parameters at which we will do a reduced basis solve
286  Real online_curvature = infile("online_curvature", 0.);
287  Real online_Bi = infile("online_Bi", 0.);
288  Real online_kappa = infile("online_kappa", 0.);
289  RBParameters online_mu;
290  online_mu.set_value("curvature", online_curvature);
291  online_mu.set_value("Bi", online_Bi);
292  online_mu.set_value("kappa", online_kappa);
293  rb_eval.set_parameters(online_mu);
294  rb_eval.print_parameters();
295  rb_eval.rb_solve(rb_eval.get_n_basis_functions());
296 
297  EquationSystems equation_systems (mesh);
298 
299  SimpleRBConstruction & rb_construction =
300  equation_systems.add_system<SimpleRBConstruction> ("RB");
301 
302  equation_systems.init ();
303 
304  rb_construction.set_rb_evaluation(rb_eval);
305 
306  // read in the data from files
307  rb_eval.read_in_basis_functions(rb_construction, "rb_data");
308  rb_construction.load_rb_solution();
309 
310  transform_mesh_and_plot(equation_systems, online_curvature, "RB_sol.e");
311  }
312 
313 #endif // LIBMESH_ENABLE_DIRICHLET
314 
315  return 0;
316 }
317 
318 #ifdef LIBMESH_ENABLE_DIRICHLET
319 
321  Real curvature,
322  const std::string & filename)
323 {
324  // Loop over the mesh nodes and move them!
325  MeshBase & mesh = es.get_mesh();
326 
327  for (auto & node : mesh.node_ptr_range())
328  {
329  Real x = (*node)(0);
330  Real z = (*node)(2);
331 
332  (*node)(0) = -1./curvature + (1./curvature + x)*cos(curvature*z);
333  (*node)(2) = (1./curvature + x)*sin(curvature*z);
334  }
335 
336 #ifdef LIBMESH_HAVE_EXODUS_API
337  ExodusII_IO(mesh).write_equation_systems(filename, es);
338 #endif
339 
340  // Avoid unused variable warnings in the --disable-exodus case
341  libmesh_ignore(filename, es);
342 }
343 
344 #endif // LIBMESH_ENABLE_DIRICHLET
T command_line_next(std::string name, T default_value)
Use GetPot&#39;s search()/next() functions to get following arguments from the command line...
Definition: libmesh.C:1011
This is the EquationSystems class.
The ReplicatedMesh class is derived from the MeshBase class, and is used to store identical copies of...
void initialize_eim_construction()
Perform initialization of this object to prepare for running train_eim_approximation().
This class serializes an RBEvaluation object using the Cap&#39;n Proto library.
virtual void write_equation_systems(const std::string &, const EquationSystems &, const std::set< std::string > *system_names=nullptr)
This method implements writing a mesh with data to a specified file where the data is taken from the ...
Definition: mesh_output.C:31
The ExodusII_IO class implements reading meshes in the ExodusII file format from Sandia National Labs...
Definition: exodusII_io.h:52
virtual Real train_eim_approximation()
Generate the EIM approximation for the specified parametrized function using either POD or the Greedy...
int main(int argc, char **argv)
void print_info(std::ostream &os=libMesh::out) const
Prints information about the equation systems, by default to libMesh::out.
MeshBase & mesh
virtual void process_parameters_file(const std::string &parameters_filename)
Read parameters in from file and set up this system accordingly.
const Parallel::Communicator & comm() const
The LibMeshInit class, when constructed, initializes the dependent libraries (e.g.
Definition: libmesh.h:90
The libMesh namespace provides an interface to certain functionality in the library.
This class serializes an RBEIMEvaluation object using the Cap&#39;n Proto library.
This is the MeshBase class.
Definition: mesh_base.h:74
virtual void print_info()
Print out info that describes the current setup of this RBConstruction.
SolverPackage default_solver_package()
Definition: libmesh.C:1050
void libmesh_ignore(const Args &...)
void transform_mesh_and_plot(EquationSystems &es, Real curvature, const std::string &filename)
void print_info(std::ostream &os=libMesh::out, const unsigned int verbosity=0, const bool global=true) const
Prints relevant information about the mesh.
Definition: mesh_base.C:1489
void init(triangulateio &t)
Initializes the fields of t to nullptr/0 as necessary.
void read_from_file(const std::string &path, bool read_error_bound_data)
Write the Cap&#39;n&#39;Proto buffer to disk.
This class is part of the rbOOmit framework.
Definition: rb_parameters.h:52
void read_from_file(const std::string &path)
Write the Cap&#39;n&#39;Proto buffer to disk.
void write_to_file(const std::string &path)
Write the Cap&#39;n&#39;Proto buffer to disk.
void write_to_file(const std::string &path)
Write the Cap&#39;n&#39;Proto buffer to disk.
void set_rb_eim_evaluation(RBEIMEvaluation &rb_eim_eval_in)
Set the RBEIMEvaluation object.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual void initialize_eim_assembly_objects()
Build a vector of ElemAssembly objects that accesses the basis functions stored in this RBEIMConstruc...
std::vector< std::unique_ptr< ElemAssembly > > & get_eim_assembly_objects()
void set_value(const std::string &param_name, Real value)
Set the value of the specified parameter.
OStreamProxy out
const MeshBase & get_mesh() const
This class de-serializes an RBEvaluation object using the Cap&#39;n Proto library.
virtual void init()
Initialize all the systems.
virtual void load_rb_solution()
Load the RB solution from the most recent solve with rb_eval into this system&#39;s solution vector...
void set_rb_evaluation(RBEvaluation &rb_eval_in)
Set the RBEvaluation object.
virtual System & add_system(std::string_view system_type, std::string_view name)
Add the system of type system_type named name to the systems array.
This class de-serializes a RBEIMEvaluation object using the Cap&#39;n Proto library.
void build_cube(UnstructuredMesh &mesh, const unsigned int nx=0, const unsigned int ny=0, const unsigned int nz=0, const Real xmin=0., const Real xmax=1., const Real ymin=0., const Real ymax=1., const Real zmin=0., const Real zmax=1., const ElemType type=INVALID_ELEM, const bool gauss_lobatto_grid=false)
Builds a (elements) cube.