libMesh
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Types | Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Attributes | List of all members
libMesh::TimeSolver Class Referenceabstract

This is a generic class that defines a solver to handle time integration of DifferentiableSystems. More...

#include <time_solver.h>

Inheritance diagram for libMesh::TimeSolver:
[legend]

Public Types

typedef DifferentiableSystem sys_type
 The type of system. More...
 

Public Member Functions

 TimeSolver (sys_type &s)
 Constructor. More...
 
virtual ~TimeSolver ()
 Destructor. More...
 
virtual void init ()
 The initialization function. More...
 
virtual void init_adjoints ()
 Initialize any adjoint related data structures, based on the number of qois. More...
 
virtual void init_data ()
 The data initialization function. More...
 
virtual void reinit ()
 The reinitialization function. More...
 
virtual void solve ()
 This method solves for the solution at the next timestep (or solves for a steady-state solution). More...
 
virtual void advance_timestep ()
 This method advances the solution to the next timestep, after a solve() has been performed. More...
 
virtual std::pair< unsigned int, Realadjoint_solve (const QoISet &qoi_indices)
 This method solves for the adjoint solution at the next adjoint timestep (or a steady state adjoint solve) More...
 
virtual void adjoint_advance_timestep ()
 This method advances the adjoint solution to the previous timestep, after an adjoint_solve() has been performed. More...
 
virtual void retrieve_timestep ()
 This method retrieves all the stored solutions at the current system.time. More...
 
virtual void integrate_qoi_timestep ()
 A method to integrate the system::QoI functionals. More...
 
virtual void integrate_adjoint_sensitivity (const QoISet &qois, const ParameterVector &parameter_vector, SensitivityData &sensitivities)
 A method to integrate the adjoint sensitivity w.r.t a given parameter vector. More...
 
virtual void integrate_adjoint_refinement_error_estimate (AdjointRefinementEstimator &adjoint_refinement_error_estimator, ErrorVector &QoI_elementwise_error)
 A method to compute the adjoint refinement error estimate at the current timestep. More...
 
virtual bool element_residual (bool request_jacobian, DiffContext &)=0
 This method uses the DifferentiablePhysics element_time_derivative(), element_constraint(), and mass_residual() to build a full residual on an element. More...
 
virtual bool side_residual (bool request_jacobian, DiffContext &)=0
 This method uses the DifferentiablePhysics side_time_derivative(), side_constraint(), and side_mass_residual() to build a full residual on an element's side. More...
 
virtual bool nonlocal_residual (bool request_jacobian, DiffContext &)=0
 This method uses the DifferentiablePhysics nonlocal_time_derivative(), nonlocal_constraint(), and nonlocal_mass_residual() to build a full residual of non-local terms. More...
 
virtual void before_timestep ()
 This method is for subclasses or users to override to do arbitrary processing between timesteps. More...
 
const sys_typesystem () const
 
sys_typesystem ()
 
virtual std::unique_ptr< DiffSolver > & diff_solver ()
 An implicit linear or nonlinear solver to use at each timestep. More...
 
virtual std::unique_ptr< LinearSolver< Number > > & linear_solver ()
 An implicit linear solver to use for adjoint and sensitivity problems. More...
 
virtual Real du (const SystemNorm &norm) const =0
 Computes the size of ||u^{n+1} - u^{n}|| in some norm. More...
 
virtual bool is_steady () const =0
 Is this effectively a steady-state solver? More...
 
void set_solution_history (const SolutionHistory &_solution_history)
 A setter function users will employ if they need to do something other than save no solution history. More...
 
SolutionHistoryget_solution_history ()
 A getter function that returns a reference to the solution history object owned by TimeSolver. More...
 
bool is_adjoint () const
 Accessor for querying whether we need to do a primal or adjoint solve. More...
 
void set_is_adjoint (bool _is_adjoint_value)
 Accessor for setting whether we need to do a primal or adjoint solve. More...
 
virtual Real last_completed_timestep_size ()
 Returns system.deltat if fixed timestep solver is used, the complete timestep size (sum of all substeps) if the adaptive time solver is used. More...
 

Static Public Member Functions

static std::string get_info ()
 Gets a string containing the reference information. More...
 
static void print_info (std::ostream &out_stream=libMesh::out)
 Prints the reference information, by default to libMesh::out. More...
 
static unsigned int n_objects ()
 Prints the number of outstanding (created, but not yet destroyed) objects. More...
 
static void enable_print_counter_info ()
 Methods to enable/disable the reference counter output from print_info() More...
 
static void disable_print_counter_info ()
 

Public Attributes

bool quiet
 Print extra debugging information if quiet == false. More...
 
unsigned int reduce_deltat_on_diffsolver_failure
 This value (which defaults to zero) is the number of times the TimeSolver is allowed to halve deltat and let the DiffSolver repeat the latest failed solve with a reduced timestep. More...
 

Protected Types

typedef bool(DifferentiablePhysics::* ResFuncType) (bool, DiffContext &)
 Definitions of argument types for use in refactoring subclasses. More...
 
typedef void(DiffContext::* ReinitFuncType) (Real)
 
typedef std::map< std::string, std::pair< unsigned int, unsigned int > > Counts
 Data structure to log the information. More...
 

Protected Member Functions

void increment_constructor_count (const std::string &name) noexcept
 Increments the construction counter. More...
 
void increment_destructor_count (const std::string &name) noexcept
 Increments the destruction counter. More...
 

Protected Attributes

std::unique_ptr< DiffSolver_diff_solver
 An implicit linear or nonlinear solver to use at each timestep. More...
 
std::unique_ptr< LinearSolver< Number > > _linear_solver
 An implicit linear solver to use for adjoint problems. More...
 
sys_type_system
 A reference to the system we are solving. More...
 
std::unique_ptr< SolutionHistorysolution_history
 A std::unique_ptr to a SolutionHistory object. More...
 
Real last_deltat
 The deltat for the last completed timestep before the current one. More...
 

Static Protected Attributes

static Counts _counts
 Actually holds the data. More...
 
static Threads::atomic< unsigned int_n_objects
 The number of objects. More...
 
static Threads::spin_mutex _mutex
 Mutual exclusion object to enable thread-safe reference counting. More...
 
static bool _enable_print_counter = true
 Flag to control whether reference count information is printed when print_info is called. More...
 

Private Attributes

bool _is_adjoint
 This boolean tells the TimeSolver whether we are solving a primal or adjoint problem. More...
 

Detailed Description

This is a generic class that defines a solver to handle time integration of DifferentiableSystems.

A user can define a solver by deriving from this class and implementing certain functions.

This class is part of the new DifferentiableSystem framework, which is still experimental. Users of this framework should beware of bugs and future API changes.

Author
Roy H. Stogner
Date
2006

Definition at line 63 of file time_solver.h.

Member Typedef Documentation

◆ Counts

typedef std::map<std::string, std::pair<unsigned int, unsigned int> > libMesh::ReferenceCounter::Counts
protectedinherited

Data structure to log the information.

The log is identified by the class name.

Definition at line 119 of file reference_counter.h.

◆ ReinitFuncType

typedef void(DiffContext::* libMesh::TimeSolver::ReinitFuncType) (Real)
protected

Definition at line 327 of file time_solver.h.

◆ ResFuncType

typedef bool(DifferentiablePhysics::* libMesh::TimeSolver::ResFuncType) (bool, DiffContext &)
protected

Definitions of argument types for use in refactoring subclasses.

Definition at line 325 of file time_solver.h.

◆ sys_type

The type of system.

Definition at line 69 of file time_solver.h.

Constructor & Destructor Documentation

◆ TimeSolver()

libMesh::TimeSolver::TimeSolver ( sys_type s)
explicit

Constructor.

Requires a reference to the system to be solved.

Definition at line 36 of file time_solver.C.

37  : quiet (true),
39  _diff_solver (),
40  _linear_solver (),
41  _system (s),
42  solution_history(std::make_unique<NoSolutionHistory>()),
43  last_deltat (s.deltat),
44  _is_adjoint (false)
45 {
46 }
bool quiet
Print extra debugging information if quiet == false.
Definition: time_solver.h:230
std::unique_ptr< DiffSolver > _diff_solver
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:302
std::unique_ptr< SolutionHistory > solution_history
A std::unique_ptr to a SolutionHistory object.
Definition: time_solver.h:319
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
bool _is_adjoint
This boolean tells the TimeSolver whether we are solving a primal or adjoint problem.
Definition: time_solver.h:340
unsigned int reduce_deltat_on_diffsolver_failure
This value (which defaults to zero) is the number of times the TimeSolver is allowed to halve deltat ...
Definition: time_solver.h:259
std::unique_ptr< LinearSolver< Number > > _linear_solver
An implicit linear solver to use for adjoint problems.
Definition: time_solver.h:307
Real last_deltat
The deltat for the last completed timestep before the current one.
Definition: time_solver.h:332

◆ ~TimeSolver()

libMesh::TimeSolver::~TimeSolver ( )
virtualdefault

Destructor.

Member Function Documentation

◆ adjoint_advance_timestep()

void libMesh::TimeSolver::adjoint_advance_timestep ( )
virtual

This method advances the adjoint solution to the previous timestep, after an adjoint_solve() has been performed.

This will be done before every UnsteadySolver::adjoint_solve().

Reimplemented in libMesh::UnsteadySolver, libMesh::AdaptiveTimeSolver, and libMesh::NewmarkSolver.

Definition at line 165 of file time_solver.C.

166 {
167 }

◆ adjoint_solve()

std::pair< unsigned int, Real > libMesh::TimeSolver::adjoint_solve ( const QoISet qoi_indices)
virtual

This method solves for the adjoint solution at the next adjoint timestep (or a steady state adjoint solve)

Reimplemented in libMesh::UnsteadySolver, libMesh::AdaptiveTimeSolver, and libMesh::TwostepTimeSolver.

Definition at line 133 of file time_solver.C.

References _system, diff_solver(), libMesh::libmesh_assert(), and system().

134 {
135  libmesh_assert(this->diff_solver().get());
136  libmesh_assert_equal_to (&(this->diff_solver()->system()), &(this->system()));
137 
138  return this->_system.ImplicitSystem::adjoint_solve(qoi_indices);
139 }
virtual std::unique_ptr< DiffSolver > & diff_solver()
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:220
const sys_type & system() const
Definition: time_solver.h:210
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
libmesh_assert(ctx)

◆ advance_timestep()

void libMesh::TimeSolver::advance_timestep ( )
virtual

This method advances the solution to the next timestep, after a solve() has been performed.

Often this will be done after every UnsteadySolver::solve(), but adaptive mesh refinement and/or adaptive time step selection may require some solve() steps to be repeated.

Reimplemented in libMesh::EigenTimeSolver, libMesh::UnsteadySolver, libMesh::AdaptiveTimeSolver, and libMesh::NewmarkSolver.

Definition at line 129 of file time_solver.C.

130 {
131 }

◆ before_timestep()

virtual void libMesh::TimeSolver::before_timestep ( )
inlinevirtual

This method is for subclasses or users to override to do arbitrary processing between timesteps.

Definition at line 205 of file time_solver.h.

205 {}

◆ diff_solver()

virtual std::unique_ptr<DiffSolver>& libMesh::TimeSolver::diff_solver ( )
inlinevirtual

An implicit linear or nonlinear solver to use at each timestep.

Reimplemented in libMesh::AdaptiveTimeSolver.

Definition at line 220 of file time_solver.h.

References _diff_solver.

Referenced by adjoint_solve(), adjust_linear_solvers(), init(), init_data(), reinit(), and solve().

220 { return _diff_solver; }
std::unique_ptr< DiffSolver > _diff_solver
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:302

◆ disable_print_counter_info()

void libMesh::ReferenceCounter::disable_print_counter_info ( )
staticinherited

Definition at line 100 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

101 {
102  _enable_print_counter = false;
103  return;
104 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ du()

virtual Real libMesh::TimeSolver::du ( const SystemNorm norm) const
pure virtual

Computes the size of ||u^{n+1} - u^{n}|| in some norm.

Note
While you can always call this function, its result may or may not be very meaningful. For example, if you call this function right after calling advance_timestep() then you'll get a result of zero since old_nonlinear_solution is set equal to nonlinear_solution in this function.

Implemented in libMesh::UnsteadySolver, libMesh::EigenTimeSolver, and libMesh::SteadySolver.

◆ element_residual()

virtual bool libMesh::TimeSolver::element_residual ( bool  request_jacobian,
DiffContext  
)
pure virtual

This method uses the DifferentiablePhysics element_time_derivative(), element_constraint(), and mass_residual() to build a full residual on an element.

What combination

it uses will depend on the type of solver. See the subclasses for more details.

Implemented in libMesh::EigenTimeSolver, libMesh::NewmarkSolver, libMesh::AdaptiveTimeSolver, libMesh::Euler2Solver, libMesh::SteadySolver, and libMesh::EulerSolver.

Referenced by libMesh::FEMSystem::numerical_elem_jacobian().

◆ enable_print_counter_info()

void libMesh::ReferenceCounter::enable_print_counter_info ( )
staticinherited

Methods to enable/disable the reference counter output from print_info()

Definition at line 94 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

95 {
96  _enable_print_counter = true;
97  return;
98 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ get_info()

std::string libMesh::ReferenceCounter::get_info ( )
staticinherited

Gets a string containing the reference information.

Definition at line 47 of file reference_counter.C.

References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().

Referenced by libMesh::ReferenceCounter::print_info().

48 {
49 #if defined(LIBMESH_ENABLE_REFERENCE_COUNTING) && defined(DEBUG)
50 
51  std::ostringstream oss;
52 
53  oss << '\n'
54  << " ---------------------------------------------------------------------------- \n"
55  << "| Reference count information |\n"
56  << " ---------------------------------------------------------------------------- \n";
57 
58  for (const auto & [name, cd] : _counts)
59  oss << "| " << name << " reference count information:\n"
60  << "| Creations: " << cd.first << '\n'
61  << "| Destructions: " << cd.second << '\n';
62 
63  oss << " ---------------------------------------------------------------------------- \n";
64 
65  return oss.str();
66 
67 #else
68 
69  return "";
70 
71 #endif
72 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
static Counts _counts
Actually holds the data.

◆ get_solution_history()

SolutionHistory & libMesh::TimeSolver::get_solution_history ( )

A getter function that returns a reference to the solution history object owned by TimeSolver.

Definition at line 124 of file time_solver.C.

References solution_history.

Referenced by libMesh::AdaptiveTimeSolver::init().

125 {
126  return *solution_history;
127 }
std::unique_ptr< SolutionHistory > solution_history
A std::unique_ptr to a SolutionHistory object.
Definition: time_solver.h:319

◆ increment_constructor_count()

void libMesh::ReferenceCounter::increment_constructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the construction counter.

Should be called in the constructor of any derived class that will be reference counted.

Definition at line 183 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().

184 {
185  libmesh_try
186  {
187  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
188  std::pair<unsigned int, unsigned int> & p = _counts[name];
189  p.first++;
190  }
191  libmesh_catch (...)
192  {
193  auto stream = libMesh::err.get();
194  stream->exceptions(stream->goodbit); // stream must not throw
195  libMesh::err << "Encountered unrecoverable error while calling "
196  << "ReferenceCounter::increment_constructor_count() "
197  << "for a(n) " << name << " object." << std::endl;
198  std::terminate();
199  }
200 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ increment_destructor_count()

void libMesh::ReferenceCounter::increment_destructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the destruction counter.

Should be called in the destructor of any derived class that will be reference counted.

Definition at line 207 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().

208 {
209  libmesh_try
210  {
211  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
212  std::pair<unsigned int, unsigned int> & p = _counts[name];
213  p.second++;
214  }
215  libmesh_catch (...)
216  {
217  auto stream = libMesh::err.get();
218  stream->exceptions(stream->goodbit); // stream must not throw
219  libMesh::err << "Encountered unrecoverable error while calling "
220  << "ReferenceCounter::increment_destructor_count() "
221  << "for a(n) " << name << " object." << std::endl;
222  std::terminate();
223  }
224 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ init()

void libMesh::TimeSolver::init ( )
virtual

The initialization function.

This method is used to initialize internal data structures before a simulation begins.

Reimplemented in libMesh::EigenTimeSolver, libMesh::AdaptiveTimeSolver, libMesh::UnsteadySolver, and libMesh::SecondOrderUnsteadySolver.

Definition at line 72 of file time_solver.C.

References _system, libMesh::LinearSolver< T >::build(), libMesh::DiffSolver::build(), libMesh::ParallelObject::comm(), diff_solver(), and linear_solver().

Referenced by libMesh::UnsteadySolver::init().

73 {
74  // If the user hasn't given us a solver to use,
75  // just build a default solver
76  if (this->diff_solver().get() == nullptr)
78 
79  if (this->linear_solver().get() == nullptr)
81 }
static std::unique_ptr< LinearSolver< T > > build(const libMesh::Parallel::Communicator &comm_in, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a LinearSolver using the linear solver package specified by solver_package.
Definition: linear_solver.C:59
const Parallel::Communicator & comm() const
static std::unique_ptr< DiffSolver > build(sys_type &s)
Factory method.
Definition: diff_solver.C:56
virtual std::unique_ptr< DiffSolver > & diff_solver()
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:220
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
virtual std::unique_ptr< LinearSolver< Number > > & linear_solver()
An implicit linear solver to use for adjoint and sensitivity problems.
Definition: time_solver.h:225

◆ init_adjoints()

void libMesh::TimeSolver::init_adjoints ( )
virtual

Initialize any adjoint related data structures, based on the number of qois.

Reimplemented in libMesh::UnsteadySolver.

Definition at line 83 of file time_solver.C.

References _system, libMesh::System::add_vector(), libMesh::GHOSTED, libMesh::make_range(), and libMesh::System::n_qois().

Referenced by libMesh::UnsteadySolver::init_adjoints().

84 {
85  libmesh_assert_msg(_system.n_qois() != 0, "System qois have to be initialized before initializing adjoints.");
86 
87  // Add adjoint vectors
88  for(auto i : make_range(_system.n_qois()))
89  {
90  std::string adjoint_solution_name = "adjoint_solution";
91  adjoint_solution_name+= std::to_string(i);
92  _system.add_vector(adjoint_solution_name, false, GHOSTED);
93  }
94 
95 }
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134

◆ init_data()

void libMesh::TimeSolver::init_data ( )
virtual

The data initialization function.

This method is used to initialize internal data structures after the underlying System has been initialized

Reimplemented in libMesh::UnsteadySolver, and libMesh::SecondOrderUnsteadySolver.

Definition at line 97 of file time_solver.C.

References _system, diff_solver(), linear_solver(), libMesh::System::name(), and libMesh::on_command_line().

Referenced by libMesh::UnsteadySolver::init_data().

98 {
99  this->diff_solver()->init();
100 
101  if (libMesh::on_command_line("--solver-system-names"))
102  this->linear_solver()->init((_system.name()+"_").c_str());
103  else
104  this->linear_solver()->init();
105 
106  this->linear_solver()->init_names(_system);
107 }
virtual std::unique_ptr< DiffSolver > & diff_solver()
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:220
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
virtual std::unique_ptr< LinearSolver< Number > > & linear_solver()
An implicit linear solver to use for adjoint and sensitivity problems.
Definition: time_solver.h:225
bool on_command_line(std::string arg)
Definition: libmesh.C:924
const std::string & name() const
Definition: system.h:2261

◆ integrate_adjoint_refinement_error_estimate()

void libMesh::TimeSolver::integrate_adjoint_refinement_error_estimate ( AdjointRefinementEstimator adjoint_refinement_error_estimator,
ErrorVector QoI_elementwise_error 
)
virtual

A method to compute the adjoint refinement error estimate at the current timestep.

int_{tstep_start}^{tstep_end} R(u^h,z) dt The user provides an initialized ARefEE object. Fills in an ErrorVector that contains the weighted sum of errors from all the QoIs and can be used to guide AMR. CURRENTLY ONLY SUPPORTED for Backward Euler.

Reimplemented in libMesh::UnsteadySolver, libMesh::SteadySolver, libMesh::EulerSolver, libMesh::FirstOrderUnsteadySolver, libMesh::TwostepTimeSolver, libMesh::AdaptiveTimeSolver, and libMesh::Euler2Solver.

Definition at line 153 of file time_solver.C.

155 {
156  libmesh_not_implemented();
157 }

◆ integrate_adjoint_sensitivity()

void libMesh::TimeSolver::integrate_adjoint_sensitivity ( const QoISet qois,
const ParameterVector parameter_vector,
SensitivityData sensitivities 
)
virtual

A method to integrate the adjoint sensitivity w.r.t a given parameter vector.

int_{tstep_start}^{tstep_end} dQ/dp dt = int_{tstep_start}^{tstep_end} ( / p) - ( R (u,z) / p ) dt

Reimplemented in libMesh::UnsteadySolver, libMesh::SteadySolver, libMesh::AdaptiveTimeSolver, and libMesh::TwostepTimeSolver.

Definition at line 146 of file time_solver.C.

147 {
148  libmesh_not_implemented();
149 }

◆ integrate_qoi_timestep()

void libMesh::TimeSolver::integrate_qoi_timestep ( )
virtual

A method to integrate the system::QoI functionals.

Reimplemented in libMesh::UnsteadySolver, libMesh::SteadySolver, libMesh::EulerSolver, libMesh::FirstOrderUnsteadySolver, libMesh::AdaptiveTimeSolver, libMesh::TwostepTimeSolver, and libMesh::Euler2Solver.

Definition at line 141 of file time_solver.C.

142 {
143  libmesh_not_implemented();
144 }

◆ is_adjoint()

bool libMesh::TimeSolver::is_adjoint ( ) const
inline

Accessor for querying whether we need to do a primal or adjoint solve.

Definition at line 277 of file time_solver.h.

References _is_adjoint.

Referenced by libMesh::FEMSystem::build_context().

278  { return _is_adjoint; }
bool _is_adjoint
This boolean tells the TimeSolver whether we are solving a primal or adjoint problem.
Definition: time_solver.h:340

◆ is_steady()

virtual bool libMesh::TimeSolver::is_steady ( ) const
pure virtual

◆ last_completed_timestep_size()

Real libMesh::TimeSolver::last_completed_timestep_size ( )
virtual

Returns system.deltat if fixed timestep solver is used, the complete timestep size (sum of all substeps) if the adaptive time solver is used.

Returns the change in system.time, deltat, for the last timestep which was successfully completed. This only returns the outermost step size in the case of nested time solvers. If no time step has yet been successfully completed, then returns system.deltat.

Reimplemented in libMesh::AdaptiveTimeSolver.

Definition at line 160 of file time_solver.C.

References last_deltat.

161 {
162  return last_deltat;
163 }
Real last_deltat
The deltat for the last completed timestep before the current one.
Definition: time_solver.h:332

◆ linear_solver()

virtual std::unique_ptr<LinearSolver<Number> >& libMesh::TimeSolver::linear_solver ( )
inlinevirtual

An implicit linear solver to use for adjoint and sensitivity problems.

Reimplemented in libMesh::AdaptiveTimeSolver.

Definition at line 225 of file time_solver.h.

References _linear_solver.

Referenced by init(), init_data(), and reinit().

225 { return _linear_solver; }
std::unique_ptr< LinearSolver< Number > > _linear_solver
An implicit linear solver to use for adjoint problems.
Definition: time_solver.h:307

◆ n_objects()

static unsigned int libMesh::ReferenceCounter::n_objects ( )
inlinestaticinherited

Prints the number of outstanding (created, but not yet destroyed) objects.

Definition at line 85 of file reference_counter.h.

References libMesh::ReferenceCounter::_n_objects.

Referenced by libMesh::LibMeshInit::~LibMeshInit().

86  { return _n_objects; }
static Threads::atomic< unsigned int > _n_objects
The number of objects.

◆ nonlocal_residual()

virtual bool libMesh::TimeSolver::nonlocal_residual ( bool  request_jacobian,
DiffContext  
)
pure virtual

This method uses the DifferentiablePhysics nonlocal_time_derivative(), nonlocal_constraint(), and nonlocal_mass_residual() to build a full residual of non-local terms.

What combination it uses will depend on the type of solver. See the subclasses for more details.

Implemented in libMesh::NewmarkSolver, libMesh::EigenTimeSolver, libMesh::Euler2Solver, libMesh::AdaptiveTimeSolver, libMesh::SteadySolver, and libMesh::EulerSolver.

Referenced by libMesh::FEMSystem::numerical_nonlocal_jacobian().

◆ print_info()

void libMesh::ReferenceCounter::print_info ( std::ostream &  out_stream = libMesh::out)
staticinherited

Prints the reference information, by default to libMesh::out.

Definition at line 81 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().

Referenced by libMesh::LibMeshInit::~LibMeshInit().

82 {
84  out_stream << ReferenceCounter::get_info();
85 }
static std::string get_info()
Gets a string containing the reference information.
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ reinit()

void libMesh::TimeSolver::reinit ( )
virtual

The reinitialization function.

This method is used after changes in the mesh

Reimplemented in libMesh::EigenTimeSolver, libMesh::UnsteadySolver, libMesh::SecondOrderUnsteadySolver, and libMesh::AdaptiveTimeSolver.

Definition at line 54 of file time_solver.C.

References _linear_solver, _system, diff_solver(), libMesh::libmesh_assert(), linear_solver(), libMesh::System::name(), libMesh::on_command_line(), and system().

Referenced by libMesh::UnsteadySolver::reinit().

55 {
56  libmesh_assert(this->diff_solver().get());
57  libmesh_assert_equal_to (&(this->diff_solver()->system()), &(this->system()));
58  this->diff_solver()->reinit();
59 
60  libmesh_assert(this->linear_solver().get());
61  this->linear_solver()->clear();
62  if (libMesh::on_command_line("--solver-system-names"))
63  this->linear_solver()->init((_system.name()+"_").c_str());
64  else
65  this->linear_solver()->init();
66 
67  this->_linear_solver->init_names(_system);
68 }
virtual std::unique_ptr< DiffSolver > & diff_solver()
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:220
const sys_type & system() const
Definition: time_solver.h:210
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312
libmesh_assert(ctx)
std::unique_ptr< LinearSolver< Number > > _linear_solver
An implicit linear solver to use for adjoint problems.
Definition: time_solver.h:307
virtual std::unique_ptr< LinearSolver< Number > > & linear_solver()
An implicit linear solver to use for adjoint and sensitivity problems.
Definition: time_solver.h:225
bool on_command_line(std::string arg)
Definition: libmesh.C:924
const std::string & name() const
Definition: system.h:2261

◆ retrieve_timestep()

void libMesh::TimeSolver::retrieve_timestep ( )
virtual

This method retrieves all the stored solutions at the current system.time.

Reimplemented in libMesh::UnsteadySolver, libMesh::SecondOrderUnsteadySolver, and libMesh::AdaptiveTimeSolver.

Definition at line 169 of file time_solver.C.

170 {
171 }

◆ set_is_adjoint()

void libMesh::TimeSolver::set_is_adjoint ( bool  _is_adjoint_value)
inline

Accessor for setting whether we need to do a primal or adjoint solve.

Definition at line 284 of file time_solver.h.

References _is_adjoint.

Referenced by libMesh::DifferentiableSystem::adjoint_solve(), libMesh::FEMSystem::postprocess(), and libMesh::DifferentiableSystem::solve().

285  { _is_adjoint = _is_adjoint_value; }
bool _is_adjoint
This boolean tells the TimeSolver whether we are solving a primal or adjoint problem.
Definition: time_solver.h:340

◆ set_solution_history()

void libMesh::TimeSolver::set_solution_history ( const SolutionHistory _solution_history)

A setter function users will employ if they need to do something other than save no solution history.

Definition at line 119 of file time_solver.C.

References libMesh::SolutionHistory::clone(), and solution_history.

Referenced by libMesh::AdaptiveTimeSolver::init().

120 {
121  solution_history = _solution_history.clone();
122 }
std::unique_ptr< SolutionHistory > solution_history
A std::unique_ptr to a SolutionHistory object.
Definition: time_solver.h:319

◆ side_residual()

virtual bool libMesh::TimeSolver::side_residual ( bool  request_jacobian,
DiffContext  
)
pure virtual

This method uses the DifferentiablePhysics side_time_derivative(), side_constraint(), and side_mass_residual() to build a full residual on an element's side.

What combination it uses will depend on the type of solver. See the subclasses for more details.

Implemented in libMesh::NewmarkSolver, libMesh::EigenTimeSolver, libMesh::AdaptiveTimeSolver, libMesh::Euler2Solver, libMesh::SteadySolver, and libMesh::EulerSolver.

Referenced by libMesh::FEMSystem::numerical_side_jacobian().

◆ solve()

void libMesh::TimeSolver::solve ( )
virtual

This method solves for the solution at the next timestep (or solves for a steady-state solution).

Usually we will only need to solve one (non)linear system per timestep, but more complex subclasses may override this.

Reimplemented in libMesh::NewmarkSolver, libMesh::EigenTimeSolver, libMesh::UnsteadySolver, libMesh::AdaptiveTimeSolver, and libMesh::TwostepTimeSolver.

Definition at line 111 of file time_solver.C.

References diff_solver(), libMesh::libmesh_assert(), and system().

112 {
113  libmesh_assert(this->diff_solver().get());
114  libmesh_assert_equal_to (&(this->diff_solver()->system()), &(this->system()));
115  this->diff_solver()->solve();
116 }
virtual std::unique_ptr< DiffSolver > & diff_solver()
An implicit linear or nonlinear solver to use at each timestep.
Definition: time_solver.h:220
const sys_type & system() const
Definition: time_solver.h:210
libmesh_assert(ctx)

◆ system() [1/2]

const sys_type& libMesh::TimeSolver::system ( ) const
inline
Returns
A constant reference to the system we are solving.

Definition at line 210 of file time_solver.h.

References _system.

Referenced by adjoint_solve(), reinit(), and solve().

210 { return _system; }
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312

◆ system() [2/2]

sys_type& libMesh::TimeSolver::system ( )
inline
Returns
A writable reference to the system we are solving.

Definition at line 215 of file time_solver.h.

References _system.

215 { return _system; }
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:312

Member Data Documentation

◆ _counts

ReferenceCounter::Counts libMesh::ReferenceCounter::_counts
staticprotectedinherited

Actually holds the data.

Definition at line 124 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::get_info().

◆ _diff_solver

std::unique_ptr<DiffSolver> libMesh::TimeSolver::_diff_solver
protected

An implicit linear or nonlinear solver to use at each timestep.

Definition at line 302 of file time_solver.h.

Referenced by libMesh::NewmarkSolver::compute_initial_accel(), diff_solver(), and libMesh::UnsteadySolver::solve().

◆ _enable_print_counter

bool libMesh::ReferenceCounter::_enable_print_counter = true
staticprotectedinherited

Flag to control whether reference count information is printed when print_info is called.

Definition at line 143 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().

◆ _is_adjoint

bool libMesh::TimeSolver::_is_adjoint
private

This boolean tells the TimeSolver whether we are solving a primal or adjoint problem.

Definition at line 340 of file time_solver.h.

Referenced by is_adjoint(), and set_is_adjoint().

◆ _linear_solver

std::unique_ptr<LinearSolver<Number> > libMesh::TimeSolver::_linear_solver
protected

An implicit linear solver to use for adjoint problems.

Definition at line 307 of file time_solver.h.

Referenced by linear_solver(), and reinit().

◆ _mutex

Threads::spin_mutex libMesh::ReferenceCounter::_mutex
staticprotectedinherited

Mutual exclusion object to enable thread-safe reference counting.

Definition at line 137 of file reference_counter.h.

◆ _n_objects

Threads::atomic< unsigned int > libMesh::ReferenceCounter::_n_objects
staticprotectedinherited

The number of objects.

Print the reference count information when the number returns to 0.

Definition at line 132 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().

◆ _system

sys_type& libMesh::TimeSolver::_system
protected

A reference to the system we are solving.

Definition at line 312 of file time_solver.h.

Referenced by libMesh::EulerSolver::_general_residual(), libMesh::Euler2Solver::_general_residual(), libMesh::SteadySolver::_general_residual(), libMesh::NewmarkSolver::_general_residual(), libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::UnsteadySolver::adjoint_solve(), adjoint_solve(), libMesh::NewmarkSolver::advance_timestep(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::NewmarkSolver::compute_initial_accel(), libMesh::FirstOrderUnsteadySolver::compute_second_order_eqns(), libMesh::UnsteadySolver::du(), libMesh::EulerSolver::element_residual(), libMesh::Euler2Solver::element_residual(), libMesh::EigenTimeSolver::element_residual(), libMesh::SecondOrderUnsteadySolver::init(), libMesh::UnsteadySolver::init(), init(), libMesh::EigenTimeSolver::init(), libMesh::UnsteadySolver::init_adjoints(), init_adjoints(), libMesh::SecondOrderUnsteadySolver::init_data(), libMesh::UnsteadySolver::init_data(), init_data(), libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::TwostepTimeSolver::integrate_adjoint_refinement_error_estimate(), libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate(), libMesh::TwostepTimeSolver::integrate_adjoint_sensitivity(), libMesh::SteadySolver::integrate_adjoint_sensitivity(), libMesh::UnsteadySolver::integrate_adjoint_sensitivity(), libMesh::Euler2Solver::integrate_qoi_timestep(), libMesh::TwostepTimeSolver::integrate_qoi_timestep(), libMesh::EulerSolver::integrate_qoi_timestep(), libMesh::SteadySolver::integrate_qoi_timestep(), libMesh::EulerSolver::nonlocal_residual(), libMesh::Euler2Solver::nonlocal_residual(), libMesh::EigenTimeSolver::nonlocal_residual(), libMesh::UnsteadySolver::old_nonlinear_solution(), libMesh::SecondOrderUnsteadySolver::old_solution_accel(), libMesh::SecondOrderUnsteadySolver::old_solution_rate(), libMesh::NewmarkSolver::project_initial_accel(), libMesh::SecondOrderUnsteadySolver::project_initial_rate(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), reinit(), libMesh::UnsteadySolver::retrieve_timestep(), libMesh::EigenTimeSolver::side_residual(), libMesh::TwostepTimeSolver::solve(), libMesh::UnsteadySolver::solve(), libMesh::EigenTimeSolver::solve(), system(), and libMesh::UnsteadySolver::update().

◆ last_deltat

Real libMesh::TimeSolver::last_deltat
protected

◆ quiet

bool libMesh::TimeSolver::quiet

Print extra debugging information if quiet == false.

Definition at line 230 of file time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve(), libMesh::UnsteadySolver::solve(), and libMesh::EigenTimeSolver::solve().

◆ reduce_deltat_on_diffsolver_failure

unsigned int libMesh::TimeSolver::reduce_deltat_on_diffsolver_failure

This value (which defaults to zero) is the number of times the TimeSolver is allowed to halve deltat and let the DiffSolver repeat the latest failed solve with a reduced timestep.

Note
This has no effect for SteadySolvers.
You must set at least one of the DiffSolver flags "continue_after_max_iterations" or "continue_after_backtrack_failure" to allow the TimeSolver to retry the solve.

Definition at line 259 of file time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve(), and libMesh::UnsteadySolver::solve().

◆ solution_history

std::unique_ptr<SolutionHistory> libMesh::TimeSolver::solution_history
protected

A std::unique_ptr to a SolutionHistory object.

Default is NoSolutionHistory, which the user can override by declaring a different kind of SolutionHistory in the application

Definition at line 319 of file time_solver.h.

Referenced by libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), get_solution_history(), libMesh::UnsteadySolver::retrieve_timestep(), and set_solution_history().


The documentation for this class was generated from the following files: