libMesh
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Types | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Attributes | List of all members
libMesh::RBSCMConstruction Class Reference

This class is part of the rbOOmit framework. More...

#include <rb_scm_construction.h>

Inheritance diagram for libMesh::RBSCMConstruction:
[legend]

Public Types

typedef RBSCMConstruction sys_type
 The type of system. More...
 
typedef RBConstructionBase< CondensedEigenSystemParent
 The type of the parent. More...
 
typedef Number(* ValueFunctionPointer) (const Point &p, const Parameters &Parameters, const std::string &sys_name, const std::string &unknown_name)
 Projects arbitrary functions onto the current solution. More...
 
typedef Gradient(* GradientFunctionPointer) (const Point &p, const Parameters &parameters, const std::string &sys_name, const std::string &unknown_name)
 
typedef std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::iterator vectors_iterator
 Vector iterator typedefs. More...
 
typedef std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::const_iterator const_vectors_iterator
 
typedef std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::iterator matrices_iterator
 Matrix iterator typedefs. More...
 
typedef std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::const_iterator const_matrices_iterator
 

Public Member Functions

 RBSCMConstruction (EquationSystems &es, const std::string &name_in, const unsigned int number_in)
 Constructor. More...
 
 RBSCMConstruction (RBSCMConstruction &&)=default
 Special functions. More...
 
 RBSCMConstruction (const RBSCMConstruction &)=delete
 
RBSCMConstructionoperator= (const RBSCMConstruction &)=delete
 
RBSCMConstructionoperator= (RBSCMConstruction &&)=delete
 
virtual ~RBSCMConstruction ()
 
virtual void clear () override
 Clear all the data structures associated with the system. More...
 
void set_rb_scm_evaluation (RBSCMEvaluation &rb_scm_eval_in)
 Set the RBSCMEvaluation object. More...
 
RBSCMEvaluationget_rb_scm_evaluation ()
 Get a reference to the RBSCMEvaluation object. More...
 
RBThetaExpansionget_rb_theta_expansion ()
 Get a reference to the RBThetaExpansion object. More...
 
virtual void resize_SCM_vectors ()
 Clear and resize the SCM data vectors. More...
 
virtual void process_parameters_file (const std::string &parameters_filename)
 Read in the parameters from file specified by parameters_filename and set the this system's member variables accordingly. More...
 
virtual void print_info ()
 Print out info that describes the current setup of this RBSCMConstruction. More...
 
virtual void set_eigensolver_properties (int)
 This function is called before truth eigensolves in compute_SCM_bounding_box and evaluate_stability_constant. More...
 
void set_RB_system_name (const std::string &new_name)
 Set the name of the associated RB system — we need this to load the (symmetrized) affine operators. More...
 
Real get_SCM_training_tolerance () const
 Get/set SCM_training_tolerance: tolerance for SCM greedy. More...
 
void set_SCM_training_tolerance (Real SCM_training_tolerance_in)
 
virtual void perform_SCM_greedy ()
 Perform the SCM greedy algorithm to develop a lower bound over the training set. More...
 
virtual void attach_deflation_space ()
 Attach the deflation space defined by the specified vector, can be useful in solving constrained eigenvalue problems. More...
 
sys_typesystem ()
 
void set_quiet_mode (bool quiet_mode_in)
 Set the quiet_mode flag. More...
 
bool is_quiet () const
 Is the system in quiet mode? More...
 
numeric_index_type get_n_training_samples () const
 Get the number of global training samples. More...
 
numeric_index_type get_local_n_training_samples () const
 Get the total number of training samples local to this processor. More...
 
numeric_index_type get_first_local_training_index () const
 Get the first local index of the training parameters. More...
 
numeric_index_type get_last_local_training_index () const
 Get the last local index of the training parameters. More...
 
virtual void initialize_training_parameters (const RBParameters &mu_min, const RBParameters &mu_max, const unsigned int n_global_training_samples, const std::map< std::string, bool > &log_param_scale, const bool deterministic=true)
 Initialize the parameter ranges and indicate whether deterministic or random training parameters should be used and whether or not we want the parameters to be scaled logarithmically. More...
 
virtual void load_training_set (const std::map< std::string, std::vector< RBParameter >> &new_training_set)
 Overwrite the training parameters with new_training_set. More...
 
void set_training_parameter_values (const std::string &param_name, const std::vector< RBParameter > &values)
 Overwrite the local training samples for param_name using values. More...
 
void broadcast_parameters (const unsigned int proc_id)
 Broadcasts parameters from processor proc_id to all processors. More...
 
void set_training_random_seed (int seed)
 Set the seed that is used to randomly generate training parameters. More...
 
void set_deterministic_training_parameter_name (const std::string &name)
 In some cases we only want to allow discrete parameter values, instead of parameters that may take any value in a specified interval. More...
 
const std::string & get_deterministic_training_parameter_name () const
 Get the name of the parameter that we will generate deterministic training parameters for. More...
 
void initialize_condensed_dofs (const std::set< dof_id_type > &global_condensed_dofs_set=std::set< dof_id_type >())
 Loop over the dofs on each processor to initialize the list of non-condensed dofs. More...
 
dof_id_type n_global_non_condensed_dofs () const
 
virtual void solve () override
 Override to solve the condensed eigenproblem with the dofs in local_non_condensed_dofs_vector stripped out of the system matrices on each processor. More...
 
virtual std::pair< Real, Realget_eigenpair (dof_id_type i) override
 Override get_eigenpair() to retrieve the eigenpair for the condensed eigensolve. More...
 
SparseMatrix< Number > & get_condensed_matrix_A () const
 
SparseMatrix< Number > & get_condensed_matrix_B () const
 
virtual void reinit () override
 Reinitializes the member data fields associated with the system, so that, e.g., assemble() may be used. More...
 
virtual std::pair< Real, Realget_eigenvalue (dof_id_type i)
 
virtual std::string system_type () const override
 
unsigned int get_n_converged () const
 
unsigned int get_n_iterations () const
 
void set_eigenproblem_type (EigenProblemType ept)
 Sets the type of the current eigen problem. More...
 
EigenProblemType get_eigenproblem_type () const
 
void set_initial_space (NumericVector< Number > &initial_space_in)
 Sets an initial eigen vector. More...
 
bool generalized () const
 
bool use_shell_matrices () const
 
void use_shell_matrices (bool use_shell_matrices)
 Set a flag to use shell matrices. More...
 
bool use_shell_precond_matrix () const
 
void use_shell_precond_matrix (bool use_shell_precond_matrix)
 Set a flag to use a shell preconditioning matrix. More...
 
const SparseMatrix< Number > & get_matrix_A () const
 
SparseMatrix< Number > & get_matrix_A ()
 
const SparseMatrix< Number > & get_matrix_B () const
 
SparseMatrix< Number > & get_matrix_B ()
 
const SparseMatrix< Number > & get_precond_matrix () const
 
SparseMatrix< Number > & get_precond_matrix ()
 
const ShellMatrix< Number > & get_shell_matrix_A () const
 
ShellMatrix< Number > & get_shell_matrix_A ()
 
const ShellMatrix< Number > & get_shell_matrix_B () const
 
ShellMatrix< Number > & get_shell_matrix_B ()
 
const ShellMatrix< Number > & get_shell_precond_matrix () const
 
ShellMatrix< Number > & get_shell_precond_matrix ()
 
const EigenSolver< Number > & get_eigen_solver () const
 
EigenSolver< Number > & get_eigen_solver ()
 
bool has_matrix_A () const
 
bool has_matrix_B () const
 
bool has_precond_matrix () const
 
bool has_shell_matrix_A () const
 
bool has_shell_matrix_B () const
 
bool has_shell_precond_matrix () const
 
void init ()
 Initializes degrees of freedom on the current mesh. More...
 
virtual void reinit_constraints ()
 Reinitializes the constraints for this system. More...
 
virtual void reinit_mesh ()
 Reinitializes the system with a new mesh. More...
 
bool is_initialized ()
 
virtual void update ()
 Update the local values to reflect the solution on neighboring processors. More...
 
virtual void assemble ()
 Prepares matrix and _dof_map for matrix assembly. More...
 
virtual void assemble_qoi (const QoISet &qoi_indices=QoISet())
 Calls user qoi function. More...
 
virtual void assemble_qoi_derivative (const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true)
 Calls user qoi derivative function. More...
 
virtual void assemble_residual_derivatives (const ParameterVector &parameters)
 Calls residual parameter derivative function. More...
 
virtual void restrict_solve_to (const SystemSubset *subset, const SubsetSolveMode subset_solve_mode=SUBSET_ZERO)
 After calling this method, any solve will be restricted to the given subdomain. More...
 
virtual std::pair< unsigned int, Realsensitivity_solve (const ParameterVector &parameters)
 Solves the sensitivity system, for the provided parameters. More...
 
virtual std::pair< unsigned int, Realweighted_sensitivity_solve (const ParameterVector &parameters, const ParameterVector &weights)
 Assembles & solves the linear system(s) (dR/du)*u_w = sum(w_p*-dR/dp), for those parameters p contained within parameters weighted by the values w_p found within weights. More...
 
virtual std::pair< unsigned int, Realadjoint_solve (const QoISet &qoi_indices=QoISet())
 Solves the adjoint system, for the specified qoi indices, or for every qoi if qoi_indices is nullptr. More...
 
virtual std::pair< unsigned int, Realweighted_sensitivity_adjoint_solve (const ParameterVector &parameters, const ParameterVector &weights, const QoISet &qoi_indices=QoISet())
 Assembles & solves the linear system(s) (dR/du)^T*z_w = sum(w_p*(d^2q/dudp - d^2R/dudp*z)), for those parameters p contained within parameters, weighted by the values w_p found within weights. More...
 
bool is_adjoint_already_solved () const
 Accessor for the adjoint_already_solved boolean. More...
 
void set_adjoint_already_solved (bool setting)
 Setter for the adjoint_already_solved boolean. More...
 
virtual void qoi_parameter_sensitivity (const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities)
 Solves for the derivative of each of the system's quantities of interest q in qoi[qoi_indices] with respect to each parameter in parameters, placing the result for qoi i and parameter j into sensitivities[i][j]. More...
 
virtual void adjoint_qoi_parameter_sensitivity (const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities)
 Solves for parameter sensitivities using the adjoint method. More...
 
virtual void forward_qoi_parameter_sensitivity (const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities)
 Solves for parameter sensitivities using the forward method. More...
 
virtual void qoi_parameter_hessian (const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &hessian)
 For each of the system's quantities of interest q in qoi[qoi_indices], and for a vector of parameters p, the parameter sensitivity Hessian H_ij is defined as H_ij = (d^2 q)/(d p_i d p_j) This Hessian is the output of this method, where for each q_i, H_jk is stored in hessian.second_derivative(i,j,k). More...
 
virtual void qoi_parameter_hessian_vector_product (const QoISet &qoi_indices, const ParameterVector &parameters, const ParameterVector &vector, SensitivityData &product)
 For each of the system's quantities of interest q in qoi[qoi_indices], and for a vector of parameters p, the parameter sensitivity Hessian H_ij is defined as H_ij = (d^2 q)/(d p_i d p_j) The Hessian-vector product, for a vector v_k in parameter space, is S_j = H_jk v_k This product is the output of this method, where for each q_i, S_j is stored in sensitivities[i][j]. More...
 
virtual bool compare (const System &other_system, const Real threshold, const bool verbose) const
 
const std::string & name () const
 
void project_solution (FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr) const
 Projects arbitrary functions onto the current solution. More...
 
void project_solution (FEMFunctionBase< Number > *f, FEMFunctionBase< Gradient > *g=nullptr) const
 Projects arbitrary functions onto the current solution. More...
 
void project_solution (ValueFunctionPointer fptr, GradientFunctionPointer gptr, const Parameters &parameters) const
 This method projects an arbitrary function onto the solution via L2 projections and nodal interpolations on each element. More...
 
void project_vector (NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
 Projects arbitrary functions onto a vector of degree of freedom values for the current system. More...
 
void project_vector (NumericVector< Number > &new_vector, FEMFunctionBase< Number > *f, FEMFunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
 Projects arbitrary functions onto a vector of degree of freedom values for the current system. More...
 
void project_vector (ValueFunctionPointer fptr, GradientFunctionPointer gptr, const Parameters &parameters, NumericVector< Number > &new_vector, int is_adjoint=-1) const
 Projects arbitrary functions onto a vector of degree of freedom values for the current system. More...
 
void boundary_project_solution (const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr)
 Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system. More...
 
void boundary_project_solution (const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, ValueFunctionPointer fptr, GradientFunctionPointer gptr, const Parameters &parameters)
 Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system. More...
 
void boundary_project_vector (const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
 Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system. More...
 
void boundary_project_vector (const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, ValueFunctionPointer fptr, GradientFunctionPointer gptr, const Parameters &parameters, NumericVector< Number > &new_vector, int is_adjoint=-1) const
 Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system. More...
 
unsigned int number () const
 
void update_global_solution (std::vector< Number > &global_soln) const
 Fill the input vector global_soln so that it contains the global solution on all processors. More...
 
void update_global_solution (std::vector< Number > &global_soln, const processor_id_type dest_proc) const
 Fill the input vector global_soln so that it contains the global solution on processor dest_proc. More...
 
const MeshBaseget_mesh () const
 
MeshBaseget_mesh ()
 
const DofMapget_dof_map () const
 
DofMapget_dof_map ()
 
const EquationSystemsget_equation_systems () const
 
EquationSystemsget_equation_systems ()
 
bool active () const
 
void activate ()
 Activates the system. More...
 
void deactivate ()
 Deactivates the system. More...
 
void set_basic_system_only ()
 Sets the system to be "basic only": i.e. More...
 
vectors_iterator vectors_begin ()
 Beginning of vectors container. More...
 
const_vectors_iterator vectors_begin () const
 Beginning of vectors container. More...
 
vectors_iterator vectors_end ()
 End of vectors container. More...
 
const_vectors_iterator vectors_end () const
 End of vectors container. More...
 
NumericVector< Number > & add_vector (std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
 Adds the additional vector vec_name to this system. More...
 
void remove_vector (std::string_view vec_name)
 Removes the additional vector vec_name from this system. More...
 
bool & project_solution_on_reinit (void)
 Tells the System whether or not to project the solution vector onto new grids when the system is reinitialized. More...
 
bool have_vector (std::string_view vec_name) const
 
const NumericVector< Number > * request_vector (std::string_view vec_name) const
 
NumericVector< Number > * request_vector (std::string_view vec_name)
 
const NumericVector< Number > * request_vector (const unsigned int vec_num) const
 
NumericVector< Number > * request_vector (const unsigned int vec_num)
 
const NumericVector< Number > & get_vector (std::string_view vec_name) const
 
NumericVector< Number > & get_vector (std::string_view vec_name)
 
const NumericVector< Number > & get_vector (const unsigned int vec_num) const
 
NumericVector< Number > & get_vector (const unsigned int vec_num)
 
const std::string & vector_name (const unsigned int vec_num) const
 
const std::string & vector_name (const NumericVector< Number > &vec_reference) const
 
void set_vector_as_adjoint (const std::string &vec_name, int qoi_num)
 Allows one to set the QoI index controlling whether the vector identified by vec_name represents a solution from the adjoint (qoi_num >= 0) or primal (qoi_num == -1) space. More...
 
int vector_is_adjoint (std::string_view vec_name) const
 
void set_vector_preservation (const std::string &vec_name, bool preserve)
 Allows one to set the boolean controlling whether the vector identified by vec_name should be "preserved": projected to new meshes, saved, etc. More...
 
bool vector_preservation (std::string_view vec_name) const
 
NumericVector< Number > & add_adjoint_solution (unsigned int i=0)
 
NumericVector< Number > & get_adjoint_solution (unsigned int i=0)
 
const NumericVector< Number > & get_adjoint_solution (unsigned int i=0) const
 
NumericVector< Number > & add_sensitivity_solution (unsigned int i=0)
 
NumericVector< Number > & get_sensitivity_solution (unsigned int i=0)
 
const NumericVector< Number > & get_sensitivity_solution (unsigned int i=0) const
 
NumericVector< Number > & add_weighted_sensitivity_adjoint_solution (unsigned int i=0)
 
NumericVector< Number > & get_weighted_sensitivity_adjoint_solution (unsigned int i=0)
 
const NumericVector< Number > & get_weighted_sensitivity_adjoint_solution (unsigned int i=0) const
 
NumericVector< Number > & add_weighted_sensitivity_solution ()
 
NumericVector< Number > & get_weighted_sensitivity_solution ()
 
const NumericVector< Number > & get_weighted_sensitivity_solution () const
 
NumericVector< Number > & add_adjoint_rhs (unsigned int i=0)
 
NumericVector< Number > & get_adjoint_rhs (unsigned int i=0)
 
const NumericVector< Number > & get_adjoint_rhs (unsigned int i=0) const
 
NumericVector< Number > & add_sensitivity_rhs (unsigned int i=0)
 
NumericVector< Number > & get_sensitivity_rhs (unsigned int i=0)
 
const NumericVector< Number > & get_sensitivity_rhs (unsigned int i=0) const
 
unsigned int n_vectors () const
 
unsigned int n_matrices () const
 
unsigned int n_vars () const
 
unsigned int n_variable_groups () const
 
unsigned int n_components () const
 
dof_id_type n_dofs () const
 
dof_id_type n_active_dofs () const
 
dof_id_type n_constrained_dofs () const
 
dof_id_type n_local_constrained_dofs () const
 
dof_id_type n_local_dofs () const
 
unsigned int add_variable (std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
 Adds the variable var to the list of variables for this system. More...
 
unsigned int add_variable (std::string_view var, const Order order=FIRST, const FEFamily=LAGRANGE, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
 Adds the variable var to the list of variables for this system. More...
 
unsigned int add_variables (const std::vector< std::string > &vars, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
 Adds the variable var to the list of variables for this system. More...
 
unsigned int add_variables (const std::vector< std::string > &vars, const Order order=FIRST, const FEFamily=LAGRANGE, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
 Adds the variable var to the list of variables for this system. More...
 
const Variablevariable (unsigned int var) const
 Return a constant reference to Variable var. More...
 
const VariableGroupvariable_group (unsigned int vg) const
 Return a constant reference to VariableGroup vg. More...
 
bool has_variable (std::string_view var) const
 
const std::string & variable_name (const unsigned int i) const
 
unsigned int variable_number (std::string_view var) const
 
void get_all_variable_numbers (std::vector< unsigned int > &all_variable_numbers) const
 Fills all_variable_numbers with all the variable numbers for the variables that have been added to this system. More...
 
unsigned int variable_scalar_number (std::string_view var, unsigned int component) const
 
unsigned int variable_scalar_number (unsigned int var_num, unsigned int component) const
 
const FETypevariable_type (const unsigned int i) const
 
const FETypevariable_type (std::string_view var) const
 
bool identify_variable_groups () const
 
void identify_variable_groups (const bool)
 Toggle automatic VariableGroup identification. More...
 
Real calculate_norm (const NumericVector< Number > &v, unsigned int var, FEMNormType norm_type, std::set< unsigned int > *skip_dimensions=nullptr) const
 
Real calculate_norm (const NumericVector< Number > &v, const SystemNorm &norm, std::set< unsigned int > *skip_dimensions=nullptr) const
 
void read_header (Xdr &io, std::string_view version, const bool read_header=true, const bool read_additional_data=true, const bool read_legacy_format=false)
 Reads the basic data header for this System. More...
 
void read_legacy_data (Xdr &io, const bool read_additional_data=true)
 Reads additional data, namely vectors, for this System. More...
 
template<typename ValType >
void read_serialized_data (Xdr &io, const bool read_additional_data=true)
 Reads additional data, namely vectors, for this System. More...
 
void read_serialized_data (Xdr &io, const bool read_additional_data=true)
 Non-templated version for backward compatibility. More...
 
template<typename InValType >
std::size_t read_serialized_vectors (Xdr &io, const std::vector< NumericVector< Number > *> &vectors) const
 Read a number of identically distributed vectors. More...
 
std::size_t read_serialized_vectors (Xdr &io, const std::vector< NumericVector< Number > *> &vectors) const
 Non-templated version for backward compatibility. More...
 
template<typename InValType >
void read_parallel_data (Xdr &io, const bool read_additional_data)
 Reads additional data, namely vectors, for this System. More...
 
void read_parallel_data (Xdr &io, const bool read_additional_data)
 Non-templated version for backward compatibility. More...
 
void write_header (Xdr &io, std::string_view version, const bool write_additional_data) const
 Writes the basic data header for this System. More...
 
void write_serialized_data (Xdr &io, const bool write_additional_data=true) const
 Writes additional data, namely vectors, for this System. More...
 
std::size_t write_serialized_vectors (Xdr &io, const std::vector< const NumericVector< Number > *> &vectors) const
 Serialize & write a number of identically distributed vectors. More...
 
void write_parallel_data (Xdr &io, const bool write_additional_data) const
 Writes additional data, namely vectors, for this System. More...
 
std::string get_info () const
 
void attach_init_function (void fptr(EquationSystems &es, const std::string &name))
 Register a user function to use in initializing the system. More...
 
void attach_init_object (Initialization &init)
 Register a user class to use to initialize the system. More...
 
void attach_assemble_function (void fptr(EquationSystems &es, const std::string &name))
 Register a user function to use in assembling the system matrix and RHS. More...
 
void attach_assemble_object (Assembly &assemble)
 Register a user object to use in assembling the system matrix and RHS. More...
 
void attach_constraint_function (void fptr(EquationSystems &es, const std::string &name))
 Register a user function for imposing constraints. More...
 
void attach_constraint_object (Constraint &constrain)
 Register a user object for imposing constraints. More...
 
bool has_constraint_object () const
 
Constraintget_constraint_object ()
 Return the user object for imposing constraints. More...
 
void attach_QOI_function (void fptr(EquationSystems &es, const std::string &name, const QoISet &qoi_indices))
 Register a user function for evaluating the quantities of interest, whose values should be placed in System::qoi. More...
 
void attach_QOI_object (QOI &qoi)
 Register a user object for evaluating the quantities of interest, whose values should be placed in System::qoi. More...
 
void attach_QOI_derivative (void fptr(EquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints))
 Register a user function for evaluating derivatives of a quantity of interest with respect to test functions, whose values should be placed in System::rhs. More...
 
void attach_QOI_derivative_object (QOIDerivative &qoi_derivative)
 Register a user object for evaluating derivatives of a quantity of interest with respect to test functions, whose values should be placed in System::rhs. More...
 
virtual void user_initialization ()
 Calls user's attached initialization function, or is overridden by the user in derived classes. More...
 
virtual void user_assembly ()
 Calls user's attached assembly function, or is overridden by the user in derived classes. More...
 
virtual void user_constrain ()
 Calls user's attached constraint function, or is overridden by the user in derived classes. More...
 
virtual void user_QOI (const QoISet &qoi_indices)
 Calls user's attached quantity of interest function, or is overridden by the user in derived classes. More...
 
virtual void user_QOI_derivative (const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true)
 Calls user's attached quantity of interest derivative function, or is overridden by the user in derived classes. More...
 
virtual void re_update ()
 Re-update the local values when the mesh has changed. More...
 
virtual void restrict_vectors ()
 Restrict vectors after the mesh has coarsened. More...
 
virtual void prolong_vectors ()
 Prolong vectors after the mesh has refined. More...
 
virtual void disable_cache ()
 Avoids use of any cached data that might affect any solve result. More...
 
Number current_solution (const dof_id_type global_dof_number) const
 
unsigned int n_qois () const
 Number of currently active quantities of interest. More...
 
void init_qois (unsigned int n_qois)
 Accessors for qoi and qoi_error_estimates vectors. More...
 
void set_qoi (unsigned int qoi_index, Number qoi_value)
 
void set_qoi (std::vector< Number > new_qoi)
 
Number get_qoi_value (unsigned int qoi_index) const
 
std::vector< Numberget_qoi_values () const
 Returns a copy of qoi, not a reference. More...
 
void set_qoi_error_estimate (unsigned int qoi_index, Number qoi_error_estimate)
 
Number get_qoi_error_estimate_value (unsigned int qoi_index) const
 
Number point_value (unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
 
Number point_value (unsigned int var, const Point &p, const Elem &e, const NumericVector< Number > *sol=nullptr) const
 
Number point_value (unsigned int var, const Point &p, const Elem *e) const
 Calls the version of point_value() which takes a reference. More...
 
Number point_value (unsigned int var, const Point &p, const NumericVector< Number > *sol) const
 Calls the parallel version of point_value(). More...
 
Gradient point_gradient (unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
 
Gradient point_gradient (unsigned int var, const Point &p, const Elem &e, const NumericVector< Number > *sol=nullptr) const
 
Gradient point_gradient (unsigned int var, const Point &p, const Elem *e) const
 Calls the version of point_gradient() which takes a reference. More...
 
Gradient point_gradient (unsigned int var, const Point &p, const NumericVector< Number > *sol) const
 Calls the parallel version of point_gradient(). More...
 
Tensor point_hessian (unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
 
Tensor point_hessian (unsigned int var, const Point &p, const Elem &e, const NumericVector< Number > *sol=nullptr) const
 
Tensor point_hessian (unsigned int var, const Point &p, const Elem *e) const
 Calls the version of point_hessian() which takes a reference. More...
 
Tensor point_hessian (unsigned int var, const Point &p, const NumericVector< Number > *sol) const
 Calls the parallel version of point_hessian(). More...
 
void local_dof_indices (const unsigned int var, std::set< dof_id_type > &var_indices) const
 Fills the std::set with the degrees of freedom on the local processor corresponding the the variable number passed in. More...
 
void zero_variable (NumericVector< Number > &v, unsigned int var_num) const
 Zeroes all dofs in v that correspond to variable number var_num. More...
 
bool get_project_with_constraints ()
 Setter and getter functions for project_with_constraints boolean. More...
 
void set_project_with_constraints (bool _project_with_constraints)
 
bool & hide_output ()
 
void projection_matrix (SparseMatrix< Number > &proj_mat) const
 This method creates a projection matrix which corresponds to the operation of project_vector between old and new solution spaces. More...
 
SparseMatrix< Number > & add_matrix (std::string_view mat_name, ParallelType type=PARALLEL, MatrixBuildType mat_build_type=MatrixBuildType::AUTOMATIC)
 Adds the additional matrix mat_name to this system. More...
 
template<template< typename > class>
SparseMatrix< Number > & add_matrix (std::string_view mat_name, ParallelType=PARALLEL)
 Adds the additional matrix mat_name to this system. More...
 
void remove_matrix (std::string_view mat_name)
 Removes the additional matrix mat_name from this system. More...
 
bool have_matrix (std::string_view mat_name) const
 
const SparseMatrix< Number > * request_matrix (std::string_view mat_name) const
 
SparseMatrix< Number > * request_matrix (std::string_view mat_name)
 
const SparseMatrix< Number > & get_matrix (std::string_view mat_name) const
 
SparseMatrix< Number > & get_matrix (std::string_view mat_name)
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
void initialize_parameters (const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
 Initialize the parameter ranges and set current_parameters. More...
 
void initialize_parameters (const RBParametrized &rb_parametrized)
 Initialize the parameter ranges and set current_parameters. More...
 
unsigned int get_n_params () const
 Get the number of parameters. More...
 
unsigned int get_n_continuous_params () const
 Get the number of continuous parameters. More...
 
unsigned int get_n_discrete_params () const
 Get the number of discrete parameters. More...
 
std::set< std::string > get_parameter_names () const
 Get a set that stores the parameter names. More...
 
const RBParametersget_parameters () const
 Get the current parameters. More...
 
bool set_parameters (const RBParameters &params)
 Set the current parameters to params The parameters are checked for validity; an error is thrown if the number of parameters or samples is different than expected. More...
 
const RBParametersget_parameters_min () const
 Get an RBParameters object that specifies the minimum allowable value for each parameter. More...
 
const RBParametersget_parameters_max () const
 Get an RBParameters object that specifies the maximum allowable value for each parameter. More...
 
Real get_parameter_min (const std::string &param_name) const
 Get minimum allowable value of parameter param_name. More...
 
Real get_parameter_max (const std::string &param_name) const
 Get maximum allowable value of parameter param_name. More...
 
void print_parameters () const
 Print the current parameters. More...
 
void write_parameter_data_to_files (const std::string &continuous_param_file_name, const std::string &discrete_param_file_name, const bool write_binary_data)
 Write out the parameter ranges to files. More...
 
void read_parameter_data_from_files (const std::string &continuous_param_file_name, const std::string &discrete_param_file_name, const bool read_binary_data)
 Read in the parameter ranges from files. More...
 
bool is_discrete_parameter (const std::string &mu_name) const
 Is parameter mu_name discrete? More...
 
const std::map< std::string, std::vector< Real > > & get_discrete_parameter_values () const
 Get a const reference to the discrete parameter values. More...
 
void print_discrete_parameter_values () const
 Print out all the discrete parameter values. More...
 

Static Public Member Functions

static std::pair< std::size_t, std::size_t > generate_training_parameters_random (const Parallel::Communicator &communicator, const std::map< std::string, bool > &log_param_scale, std::map< std::string, std::vector< RBParameter >> &local_training_parameters_in, const unsigned int n_global_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, const int training_parameters_random_seed=-1, const bool serial_training_set=false)
 Static helper function for generating a randomized set of parameters. More...
 
static std::pair< std::size_t, std::size_t > generate_training_parameters_deterministic (const Parallel::Communicator &communicator, const std::map< std::string, bool > &log_param_scale, std::map< std::string, std::vector< RBParameter >> &local_training_parameters_in, const unsigned int n_global_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, const bool serial_training_set=false)
 Static helper function for generating a deterministic set of parameters. More...
 
static std::string get_info ()
 Gets a string containing the reference information. More...
 
static std::string get_info ()
 Gets a string containing the reference information. More...
 
static void print_info (std::ostream &out_stream=libMesh::out)
 Prints the reference information, by default to libMesh::out. More...
 
static void print_info (std::ostream &out_stream=libMesh::out)
 Prints the reference information, by default to libMesh::out. More...
 
static unsigned int n_objects ()
 Prints the number of outstanding (created, but not yet destroyed) objects. More...
 
static unsigned int n_objects ()
 Prints the number of outstanding (created, but not yet destroyed) objects. More...
 
static void enable_print_counter_info ()
 Methods to enable/disable the reference counter output from print_info() More...
 
static void enable_print_counter_info ()
 Methods to enable/disable the reference counter output from print_info() More...
 
static void disable_print_counter_info ()
 
static void disable_print_counter_info ()
 
static Real get_closest_value (Real value, const std::vector< Real > &list_of_values)
 

Public Attributes

SparseMatrix< Number > * condensed_matrix_A
 The (condensed) system matrix for standard eigenvalue problems. More...
 
SparseMatrix< Number > * condensed_matrix_B
 A second (condensed) system matrix for generalized eigenvalue problems. More...
 
std::vector< dof_id_typelocal_non_condensed_dofs_vector
 Vector storing the local dof indices that will not be condensed. More...
 
SparseMatrix< Number > * matrix_A
 The system matrix for standard eigenvalue problems. More...
 
SparseMatrix< Number > * matrix_B
 A second system matrix for generalized eigenvalue problems. More...
 
std::unique_ptr< ShellMatrix< Number > > shell_matrix_A
 The system shell matrix for standard eigenvalue problems. More...
 
std::unique_ptr< ShellMatrix< Number > > shell_matrix_B
 A second system shell matrix for generalized eigenvalue problems. More...
 
SparseMatrix< Number > * precond_matrix
 A preconditioning matrix. More...
 
std::unique_ptr< ShellMatrix< Number > > shell_precond_matrix
 A preconditioning shell matrix. More...
 
std::unique_ptr< EigenSolver< Number > > eigen_solver
 The EigenSolver, defining which interface, i.e solver package to use. More...
 
bool assemble_before_solve
 Flag which tells the system to whether or not to call the user assembly function during each call to solve(). More...
 
bool use_fixed_solution
 A boolean to be set to true by systems using elem_fixed_solution, for optional use by e.g. More...
 
int extra_quadrature_order
 A member int that can be employed to indicate increased or reduced quadrature order. More...
 
std::unique_ptr< NumericVector< Number > > solution
 Data structure to hold solution values. More...
 
std::unique_ptr< NumericVector< Number > > current_local_solution
 All the values I need to compute my contribution to the simulation at hand. More...
 
Real time
 For time-dependent problems, this is the time t at the beginning of the current timestep. More...
 
bool verbose_mode
 Public boolean to toggle verbose mode. More...
 

Protected Types

typedef std::map< std::string, std::pair< unsigned int, unsigned int > > Counts
 Data structure to log the information. More...
 
typedef std::map< std::string, std::pair< unsigned int, unsigned int > > Counts
 Data structure to log the information. More...
 

Protected Member Functions

virtual void add_scaled_symm_Aq (unsigned int q_a, Number scalar)
 Add the scaled symmetrized affine matrix from the associated RBSystem to matrix_A. More...
 
virtual void load_matrix_B ()
 Copy over the matrix to store in matrix_B, usually this is the mass or inner-product matrix, but needs to be implemented in subclass. More...
 
virtual void compute_SCM_bounding_box ()
 Compute the SCM bounding box. More...
 
virtual void evaluate_stability_constant ()
 Compute the stability constant for current_parameters by solving a generalized eigenvalue problem over the truth space. More...
 
virtual void enrich_C_J (unsigned int new_C_J_index)
 Enrich C_J by adding the element of SCM_training_samples that has the largest gap between alpha_LB and alpha_LB. More...
 
virtual std::pair< unsigned int, Realcompute_SCM_bounds_on_training_set ()
 Compute upper and lower bounds for each SCM training point. More...
 
Number B_inner_product (const NumericVector< Number > &v, const NumericVector< Number > &w) const
 Compute the inner product between two vectors using the system's matrix_B. More...
 
Number Aq_inner_product (unsigned int q, const NumericVector< Number > &v, const NumericVector< Number > &w)
 Compute the inner product between two vectors using matrix Aq. More...
 
virtual Real SCM_greedy_error_indicator (Real LB, Real UB)
 Helper function which provides an error indicator to be used in the SCM greedy. More...
 
virtual void init_data ()
 Initializes the member data fields associated with the system, so that, e.g., assemble() may be used. More...
 
RBParameters get_params_from_training_set (unsigned int global_index)
 Return the RBParameters in index global_index of the global training set. More...
 
void set_params_from_training_set (unsigned int global_index)
 Set parameters to the RBParameters stored in index global_index of the global training set. More...
 
virtual void set_params_from_training_set_and_broadcast (unsigned int global_index)
 Load the specified training parameter and then broadcast to all processors. More...
 
virtual void add_matrices () override
 Adds the necessary matrices and shell matrices. More...
 
virtual void init_matrices () override
 Initializes the matrices associated with the system. More...
 
void set_n_converged (unsigned int nconv)
 Set the _n_converged_eigenpairs member, useful for subclasses of EigenSystem. More...
 
void set_n_iterations (unsigned int its)
 Set the _n_iterations member, useful for subclasses of EigenSystem. More...
 
void project_vector (NumericVector< Number > &, int is_adjoint=-1) const
 Projects the vector defined on the old mesh onto the new mesh. More...
 
void project_vector (const NumericVector< Number > &, NumericVector< Number > &, int is_adjoint=-1) const
 Projects the vector defined on the old mesh onto the new mesh. More...
 
bool can_add_matrices () const
 
void solve_for_unconstrained_dofs (NumericVector< Number > &, int is_adjoint=-1) const
 
void increment_constructor_count (const std::string &name) noexcept
 Increments the construction counter. More...
 
void increment_constructor_count (const std::string &name) noexcept
 Increments the construction counter. More...
 
void increment_destructor_count (const std::string &name) noexcept
 Increments the destruction counter. More...
 
void increment_destructor_count (const std::string &name) noexcept
 Increments the destruction counter. More...
 

Static Protected Member Functions

static void get_global_max_error_pair (const Parallel::Communicator &communicator, std::pair< numeric_index_type, Real > &error_pair)
 Static function to return the error pair (index,error) that is corresponds to the largest error on all processors. More...
 

Protected Attributes

Real SCM_training_tolerance
 Tolerance which controls when to terminate the SCM Greedy. More...
 
std::string RB_system_name
 The name of the associated RB system. More...
 
bool quiet_mode
 Flag to indicate whether we print out extra information during the Offline stage. More...
 
bool serial_training_set
 This boolean flag indicates whether or not the training set should be the same on all processors. More...
 
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
 We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary memory allocation/deallocation). More...
 
const Parallel::Communicator_communicator
 

Static Protected Attributes

static Counts _counts
 Actually holds the data. More...
 
static Counts _counts
 Actually holds the data. More...
 
static Threads::atomic< unsigned int_n_objects
 The number of objects. More...
 
static Threads::atomic< unsigned int_n_objects
 The number of objects. More...
 
static Threads::spin_mutex _mutex
 Mutual exclusion object to enable thread-safe reference counting. More...
 
static Threads::spin_mutex _mutex
 Mutual exclusion object to enable thread-safe reference counting. More...
 
static bool _enable_print_counter = true
 Flag to control whether reference count information is printed when print_info is called. More...
 
static bool _enable_print_counter = true
 Flag to control whether reference count information is printed when print_info is called. More...
 

Private Attributes

RBSCMEvaluationrb_scm_eval
 The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM. More...
 

Detailed Description

This class is part of the rbOOmit framework.

RBSCMConstruction implements the the Successive Constraint Method (SCM) for computing rigorous lower bounds for stability constants.

Author
David J. Knezevic
Date
2009

Definition at line 53 of file rb_scm_construction.h.

Member Typedef Documentation

◆ const_matrices_iterator

typedef std::map<std::string, std::unique_ptr<SparseMatrix<Number> >, std::less<> >::const_iterator libMesh::System::const_matrices_iterator
inherited

Definition at line 1810 of file system.h.

◆ const_vectors_iterator

typedef std::map<std::string, std::unique_ptr<NumericVector<Number> >, std::less<> >::const_iterator libMesh::System::const_vectors_iterator
inherited

Definition at line 767 of file system.h.

◆ Counts [1/2]

typedef std::map<std::string, std::pair<unsigned int, unsigned int> > libMesh::ReferenceCounter::Counts
protectedinherited

Data structure to log the information.

The log is identified by the class name.

Definition at line 119 of file reference_counter.h.

◆ Counts [2/2]

typedef std::map<std::string, std::pair<unsigned int, unsigned int> > libMesh::ReferenceCounter::Counts
protectedinherited

Data structure to log the information.

The log is identified by the class name.

Definition at line 119 of file reference_counter.h.

◆ GradientFunctionPointer

typedef Gradient(* libMesh::System::GradientFunctionPointer) (const Point &p, const Parameters &parameters, const std::string &sys_name, const std::string &unknown_name)
inherited

Definition at line 542 of file system.h.

◆ matrices_iterator

typedef std::map<std::string, std::unique_ptr<SparseMatrix<Number> >, std::less<> >::iterator libMesh::System::matrices_iterator
inherited

Matrix iterator typedefs.

Definition at line 1809 of file system.h.

◆ Parent

The type of the parent.

Definition at line 84 of file rb_scm_construction.h.

◆ sys_type

The type of system.

Definition at line 79 of file rb_scm_construction.h.

◆ ValueFunctionPointer

typedef Number(* libMesh::System::ValueFunctionPointer) (const Point &p, const Parameters &Parameters, const std::string &sys_name, const std::string &unknown_name)
inherited

Projects arbitrary functions onto the current solution.

The function value fptr and its gradient gptr are represented by function pointers. A gradient gptr is only required/used for projecting onto finite element spaces with continuous derivatives.

Definition at line 538 of file system.h.

◆ vectors_iterator

typedef std::map<std::string, std::unique_ptr<NumericVector<Number> >, std::less<> >::iterator libMesh::System::vectors_iterator
inherited

Vector iterator typedefs.

Definition at line 766 of file system.h.

Constructor & Destructor Documentation

◆ RBSCMConstruction() [1/3]

libMesh::RBSCMConstruction::RBSCMConstruction ( EquationSystems es,
const std::string &  name_in,
const unsigned int  number_in 
)

Constructor.

Optionally initializes required data structures.

Definition at line 47 of file rb_scm_construction.C.

References libMesh::System::assemble_before_solve, libMesh::GHEP, and libMesh::EigenSystem::set_eigenproblem_type().

50  : Parent(es, name_in, number_in),
52  RB_system_name(""),
53  rb_scm_eval(nullptr)
54 {
55 
56  // set assemble_before_solve flag to false
57  // so that we control matrix assembly.
58  assemble_before_solve = false;
59 
60  // We symmetrize all operators hence use symmetric solvers
62 
63 }
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...
Real SCM_training_tolerance
Tolerance which controls when to terminate the SCM Greedy.
std::string RB_system_name
The name of the associated RB system.
RBConstructionBase< CondensedEigenSystem > Parent
The type of the parent.
void set_eigenproblem_type(EigenProblemType ept)
Sets the type of the current eigen problem.
Definition: eigen_system.C:85
bool assemble_before_solve
Flag which tells the system to whether or not to call the user assembly function during each call to ...
Definition: system.h:1527

◆ RBSCMConstruction() [2/3]

libMesh::RBSCMConstruction::RBSCMConstruction ( RBSCMConstruction &&  )
default

Special functions.

  • This class has the same restrictions/defaults as its base class.
  • Destructor is defaulted out-of-line

◆ RBSCMConstruction() [3/3]

libMesh::RBSCMConstruction::RBSCMConstruction ( const RBSCMConstruction )
delete

◆ ~RBSCMConstruction()

libMesh::RBSCMConstruction::~RBSCMConstruction ( )
virtualdefault

Member Function Documentation

◆ activate()

void libMesh::System::activate ( )
inlineinherited

Activates the system.

Only active systems are solved.

Definition at line 2317 of file system.h.

References libMesh::System::_active.

2318 {
2319  _active = true;
2320 }
bool _active
Flag stating if the system is active or not.
Definition: system.h:2156

◆ active()

bool libMesh::System::active ( ) const
inlineinherited
Returns
true if the system is active, false otherwise. An active system will be solved.

Definition at line 2309 of file system.h.

References libMesh::System::_active.

2310 {
2311  return _active;
2312 }
bool _active
Flag stating if the system is active or not.
Definition: system.h:2156

◆ add_adjoint_rhs()

NumericVector< Number > & libMesh::System::add_adjoint_rhs ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's adjoint rhs vectors, by default the one corresponding to the first qoi. Creates the vector if it doesn't already exist.

Definition at line 1245 of file system.C.

References libMesh::System::add_vector().

Referenced by libMesh::ExplicitSystem::assemble_qoi_derivative(), and libMesh::FEMSystem::assemble_qoi_derivative().

1246 {
1247  std::ostringstream adjoint_rhs_name;
1248  adjoint_rhs_name << "adjoint_rhs" << i;
1249 
1250  return this->add_vector(adjoint_rhs_name.str(), false);
1251 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751

◆ add_adjoint_solution()

NumericVector< Number > & libMesh::System::add_adjoint_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's adjoint solution vectors, by default the one corresponding to the first qoi. Creates the vector if it doesn't already exist.

Definition at line 1181 of file system.C.

References libMesh::System::add_vector(), and libMesh::System::set_vector_as_adjoint().

Referenced by libMesh::ImplicitSystem::adjoint_solve().

1182 {
1183  std::ostringstream adjoint_name;
1184  adjoint_name << "adjoint_solution" << i;
1185 
1186  NumericVector<Number> & returnval = this->add_vector(adjoint_name.str());
1187  this->set_vector_as_adjoint(adjoint_name.str(), i);
1188  return returnval;
1189 }
void set_vector_as_adjoint(const std::string &vec_name, int qoi_num)
Allows one to set the QoI index controlling whether the vector identified by vec_name represents a so...
Definition: system.C:1107
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751
template class LIBMESH_EXPORT NumericVector< Number >

◆ add_matrices()

void libMesh::EigenSystem::add_matrices ( )
overrideprotectedvirtualinherited

Adds the necessary matrices and shell matrices.

Reimplemented from libMesh::System.

Definition at line 126 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::_use_shell_precond_matrix, libMesh::System::add_matrices(), libMesh::System::add_matrix(), libMesh::ShellMatrix< T >::build(), libMesh::ParallelObject::comm(), libMesh::EigenSystem::generalized(), libMesh::EigenSystem::matrix_A, libMesh::EigenSystem::matrix_B, libMesh::EigenSystem::precond_matrix, libMesh::EigenSystem::shell_matrix_A, libMesh::EigenSystem::shell_matrix_B, and libMesh::EigenSystem::shell_precond_matrix.

127 {
129 
131  {
132  if (!shell_matrix_A)
134 
135  if (generalized() && !shell_matrix_B)
137 
139  {
142  }
143  else if (!precond_matrix)
144  precond_matrix = &(this->add_matrix("Eigen Preconditioner"));
145  }
146  else
147  {
148  if (!matrix_A)
149  matrix_A = &(this->add_matrix("Eigen Matrix A"));
150 
151  if (generalized() && !matrix_B)
152  matrix_B = &(this->add_matrix("Eigen Matrix B"));
153  }
154 }
bool generalized() const
Definition: eigen_system.C:303
SparseMatrix< Number > * matrix_B
A second system matrix for generalized eigenvalue problems.
Definition: eigen_system.h:321
std::unique_ptr< ShellMatrix< Number > > shell_precond_matrix
A preconditioning shell matrix.
Definition: eigen_system.h:353
static std::unique_ptr< ShellMatrix< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a ShellMatrix<T> using the linear solver package specified by solver_package.
Definition: shell_matrix.C:32
const Parallel::Communicator & comm() const
std::unique_ptr< ShellMatrix< Number > > shell_matrix_A
The system shell matrix for standard eigenvalue problems.
Definition: eigen_system.h:329
SparseMatrix< Number > * precond_matrix
A preconditioning matrix.
Definition: eigen_system.h:345
bool _use_shell_precond_matrix
A boolean flag to indicate whether or not to use a shell preconditioning matrix.
Definition: eigen_system.h:417
virtual void add_matrices()
Insertion point for adding matrices in derived classes before init_matrices() is called.
Definition: system.h:1903
std::unique_ptr< ShellMatrix< Number > > shell_matrix_B
A second system shell matrix for generalized eigenvalue problems.
Definition: eigen_system.h:337
SparseMatrix< Number > * matrix_A
The system matrix for standard eigenvalue problems.
Definition: eigen_system.h:313
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412
SparseMatrix< Number > & add_matrix(std::string_view mat_name, ParallelType type=PARALLEL, MatrixBuildType mat_build_type=MatrixBuildType::AUTOMATIC)
Adds the additional matrix mat_name to this system.
Definition: system.C:985

◆ add_matrix() [1/2]

SparseMatrix< Number > & libMesh::System::add_matrix ( std::string_view  mat_name,
ParallelType  type = PARALLEL,
MatrixBuildType  mat_build_type = MatrixBuildType::AUTOMATIC 
)
inherited

Adds the additional matrix mat_name to this system.

Only allowed prior to assemble(). All additional matrices have the same sparsity pattern as the matrix used during solution. When not System but the user wants to initialize the mayor matrix, then all the additional matrices, if existent, have to be initialized by the user, too.

This non-template method will add a derived matrix type corresponding to the solver package. If the user wishes to specify the matrix type to add, use the templated add_matrix method instead

Parameters
mat_nameA name for the matrix
typeThe serial/parallel/ghosted type of the matrix
mat_build_typeThe matrix type to build

Definition at line 985 of file system.C.

References libMesh::System::_matrices, libMesh::System::_matrix_types, libMesh::ParallelObject::comm(), libMesh::default_solver_package(), libMesh::System::late_matrix_init(), and libMesh::libmesh_assert().

Referenced by libMesh::ImplicitSystem::add_matrices(), libMesh::EigenSystem::add_matrices(), alternative_fe_assembly(), libMesh::EigenTimeSolver::init(), main(), and libMesh::NewmarkSystem::NewmarkSystem().

988 {
989  parallel_object_only();
990 
991  libmesh_assert(this->comm().verify(std::string(mat_name)));
992  libmesh_assert(this->comm().verify(int(type)));
993  libmesh_assert(this->comm().verify(int(mat_build_type)));
994 
995  // Return the matrix if it is already there.
996  auto it = this->_matrices.find(mat_name);
997  if (it != this->_matrices.end())
998  return *it->second;
999 
1000  // Otherwise build the matrix to return.
1001  auto pr = _matrices.emplace
1002  (mat_name,
1003  SparseMatrix<Number>::build(this->comm(),
1005  mat_build_type));
1006 
1007  _matrix_types.emplace(mat_name, type);
1008 
1009  SparseMatrix<Number> & mat = *(pr.first->second);
1010 
1011  // Initialize it first if we've already initialized the others.
1012  this->late_matrix_init(mat, type);
1013 
1014  return mat;
1015 }
const Parallel::Communicator & comm() const
static std::unique_ptr< SparseMatrix< Number > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package(), const MatrixBuildType matrix_build_type=MatrixBuildType::AUTOMATIC)
Builds a SparseMatrix<T> using the linear solver package specified by solver_package.
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181
SolverPackage default_solver_package()
Definition: libmesh.C:1050
libmesh_assert(ctx)
std::map< std::string, ParallelType, std::less<> > _matrix_types
Holds the types of the matrices.
Definition: system.h:2186
template class LIBMESH_EXPORT SparseMatrix< Number >
void late_matrix_init(SparseMatrix< Number > &mat, ParallelType type)
Helper function to keep DofMap forward declarable in system.h.
Definition: system.C:1019

◆ add_matrix() [2/2]

template<template< typename > class MatrixType>
SparseMatrix< Number > & libMesh::System::add_matrix ( std::string_view  mat_name,
ParallelType  type = PARALLEL 
)
inlineinherited

Adds the additional matrix mat_name to this system.

Only allowed prior to assemble(). All additional matrices have the same sparsity pattern as the matrix used during solution. When not System but the user wants to initialize the mayor matrix, then all the additional matrices, if existent, have to be initialized by the user, too.

This method will create add a derived matrix of type MatrixType<Number>. One can use the non-templated add_matrix method to add a matrix corresponding to the default solver package

Parameters
mat_nameA name for the matrix
typeThe serial/parallel/ghosted type of the matrix

Definition at line 2602 of file system.h.

References libMesh::System::_matrices, libMesh::System::_matrix_types, and libMesh::System::late_matrix_init().

2604 {
2605  // Return the matrix if it is already there.
2606  auto it = this->_matrices.find(mat_name);
2607  if (it != this->_matrices.end())
2608  return *it->second;
2609 
2610  // Otherwise build the matrix to return.
2611  auto pr = _matrices.emplace(mat_name, std::make_unique<MatrixType<Number>>(this->comm()));
2612  _matrix_types.emplace(mat_name, type);
2613 
2614  SparseMatrix<Number> & mat = *(pr.first->second);
2615 
2616  // Initialize it first if we've already initialized the others.
2617  this->late_matrix_init(mat, type);
2618 
2619  return mat;
2620 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181
std::map< std::string, ParallelType, std::less<> > _matrix_types
Holds the types of the matrices.
Definition: system.h:2186
template class LIBMESH_EXPORT SparseMatrix< Number >
void late_matrix_init(SparseMatrix< Number > &mat, ParallelType type)
Helper function to keep DofMap forward declarable in system.h.
Definition: system.C:1019

◆ add_scaled_symm_Aq()

void libMesh::RBSCMConstruction::add_scaled_symm_Aq ( unsigned int  q_a,
Number  scalar 
)
protectedvirtual

Add the scaled symmetrized affine matrix from the associated RBSystem to matrix_A.

Definition at line 204 of file rb_scm_construction.C.

References libMesh::RBConstruction::add_scaled_Aq(), libMesh::System::get_equation_systems(), libMesh::EigenSystem::get_matrix_A(), libMesh::EquationSystems::get_system(), and RB_system_name.

Referenced by Aq_inner_product(), compute_SCM_bounding_box(), and evaluate_stability_constant().

205 {
206  LOG_SCOPE("add_scaled_symm_Aq()", "RBSCMConstruction");
207  // Load the operators from the RBConstruction
208  EquationSystems & es = this->get_equation_systems();
209  RBConstruction & rb_system = es.get_system<RBConstruction>(RB_system_name);
210  rb_system.add_scaled_Aq(scalar, q_a, &get_matrix_A(), true);
211 }
const SparseMatrix< Number > & get_matrix_A() const
Definition: eigen_system.C:311
const EquationSystems & get_equation_systems() const
Definition: system.h:730
std::string RB_system_name
The name of the associated RB system.

◆ add_sensitivity_rhs()

NumericVector< Number > & libMesh::System::add_sensitivity_rhs ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's sensitivity rhs vectors, by default the one corresponding to the first parameter. Creates the vector if it doesn't already exist.

Definition at line 1275 of file system.C.

References libMesh::System::add_vector().

Referenced by libMesh::ImplicitSystem::assemble_residual_derivatives().

1276 {
1277  std::ostringstream sensitivity_rhs_name;
1278  sensitivity_rhs_name << "sensitivity_rhs" << i;
1279 
1280  return this->add_vector(sensitivity_rhs_name.str(), false);
1281 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751

◆ add_sensitivity_solution()

NumericVector< Number > & libMesh::System::add_sensitivity_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's solution sensitivity vectors, by default the one corresponding to the first parameter. Creates the vector if it doesn't already exist.

Definition at line 1130 of file system.C.

References libMesh::System::add_vector().

Referenced by libMesh::ImplicitSystem::sensitivity_solve().

1131 {
1132  std::ostringstream sensitivity_name;
1133  sensitivity_name << "sensitivity_solution" << i;
1134 
1135  return this->add_vector(sensitivity_name.str());
1136 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751

◆ add_variable() [1/2]

unsigned int libMesh::System::add_variable ( std::string_view  var,
const FEType type,
const std::set< subdomain_id_type > *const  active_subdomains = nullptr 
)
inherited

Adds the variable var to the list of variables for this system.

If active_subdomains is either nullptr (the default) or points to an empty set, then it will be assumed that var has no subdomain restrictions

Returns
The index number for the new variable.

Definition at line 1305 of file system.C.

References libMesh::System::_variable_groups, libMesh::System::_variable_numbers, libMesh::System::_variables, libMesh::Variable::active_subdomains(), libMesh::System::add_variables(), libMesh::ParallelObject::comm(), libMesh::System::identify_variable_groups(), libMesh::Variable::implicitly_active(), libMesh::System::is_initialized(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::System::n_variable_groups(), libMesh::System::n_vars(), libMesh::System::variable(), libMesh::System::variable_name(), and libMesh::System::variable_type().

Referenced by libMesh::DifferentiableSystem::add_second_order_dot_vars(), libMesh::System::add_variable(), assemble_and_solve(), OverlappingTestBase::init(), SolidSystem::init_data(), CurlCurlSystem::init_data(), SimpleEIMConstruction::init_data(), HeatSystem::init_data(), SimpleRBConstruction::init_data(), main(), libMesh::ErrorVector::plot_error(), libMesh::System::read_header(), RationalMapTest< elem_type >::setUp(), SlitMeshRefinedSystemTest::setUp(), FETestBase< order, family, elem_type, 1 >::setUp(), WriteVecAndScalar::setupTests(), SystemsTest::simpleSetup(), MultiEvaluablePredTest::test(), ConstraintOperatorTest::test1DCoarseningNewNodes(), ConstraintOperatorTest::test1DCoarseningOperator(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), MeshFunctionTest::test_subdomain_id_sets(), SystemsTest::testAssemblyWithDgFemContext(), DofMapTest::testBadElemFECombo(), EquationSystemsTest::testBadVarNames(), SystemsTest::testBlockRestrictedVarNDofs(), SystemsTest::testBoundaryProjectCube(), DofMapTest::testConstraintLoopDetection(), MeshInputTest::testCopyElementSolutionImpl(), MeshInputTest::testCopyElementVectorImpl(), MeshInputTest::testCopyNodalSolutionImpl(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), SystemsTest::testDofCouplingWithVarGroups(), DofMapTest::testDofOwner(), MeshInputTest::testDynaReadPatch(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), MeshAssignTest::testMeshMoveAssign(), PeriodicBCTest::testPeriodicBC(), EquationSystemsTest::testPostInitAddElem(), EquationSystemsTest::testPostInitAddRealSystem(), SystemsTest::testProjectCubeWithMeshFunction(), MeshInputTest::testProjectionRegression(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), InfFERadialTest::testRefinement(), EquationSystemsTest::testRefineThenReinitPreserveFlags(), EquationSystemsTest::testReinitWithNodeElem(), EquationSystemsTest::testRepartitionThenReinit(), EquationSystemsTest::testSelectivePRefine(), BoundaryInfoTest::testShellFaceConstraints(), MeshInputTest::testSingleElementImpl(), WriteVecAndScalar::testWriteExodus(), and WriteVecAndScalar::testWriteNemesis().

1308 {
1309  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1310 
1311  libmesh_assert(this->comm().verify(std::string(var)));
1312  libmesh_assert(this->comm().verify(type));
1313  libmesh_assert(this->comm().verify((active_subdomains == nullptr)));
1314 
1315  if (active_subdomains)
1316  libmesh_assert(this->comm().verify(active_subdomains->size()));
1317 
1318  // Make sure the variable isn't there already
1319  // or if it is, that it's the type we want
1320  for (auto v : make_range(this->n_vars()))
1321  if (this->variable_name(v) == var)
1322  {
1323  if (this->variable_type(v) == type)
1324  {
1325  // Check whether the existing variable's active subdomains also matches
1326  // the incoming variable's active subdomains. If they don't match, then
1327  // either it is an error by the user or the user is trying to change the
1328  // subdomain restriction after the variable has already been added, which
1329  // is not supported.
1330  const Variable & existing_var = this->variable(v);
1331 
1332  // Check whether active_subdomains is not provided/empty and the existing_var is implicitly_active()
1333  bool check1 = (!active_subdomains || active_subdomains->empty()) && existing_var.implicitly_active();
1334 
1335  // Check if the provided active_subdomains is equal to the existing_var's active_subdomains
1336  bool check2 = (active_subdomains && (*active_subdomains == existing_var.active_subdomains()));
1337 
1338  // If either of these checks passed, then we already have this variable
1339  if (check1 || check2)
1340  return _variables[v].number();
1341  }
1342 
1343  libmesh_error_msg("ERROR: incompatible variable " << var << " has already been added for this system!");
1344  }
1345 
1346  libmesh_assert(!this->is_initialized());
1347 
1348  if (this->n_variable_groups())
1349  {
1350  // Optimize for VariableGroups here - if the user is adding multiple
1351  // variables of the same FEType and subdomain restriction, catch
1352  // that here and add them as members of the same VariableGroup.
1353  //
1354  // start by setting this flag to whatever the user has requested
1355  // and then consider the conditions which should negate it.
1356  bool should_be_in_vg = this->identify_variable_groups();
1357 
1358  VariableGroup & vg(_variable_groups.back());
1359 
1360  // get a pointer to their subdomain restriction, if any.
1361  const std::set<subdomain_id_type> * const
1362  their_active_subdomains (vg.implicitly_active() ?
1363  nullptr : &vg.active_subdomains());
1364 
1365  // Different types?
1366  if (vg.type() != type)
1367  should_be_in_vg = false;
1368 
1369  // they are restricted, we aren't?
1370  if (their_active_subdomains &&
1371  (!active_subdomains || (active_subdomains && active_subdomains->empty())))
1372  should_be_in_vg = false;
1373 
1374  // they aren't restricted, we are?
1375  if (!their_active_subdomains && (active_subdomains && !active_subdomains->empty()))
1376  should_be_in_vg = false;
1377 
1378  if (their_active_subdomains && active_subdomains)
1379  // restricted to different sets?
1380  if (*their_active_subdomains != *active_subdomains)
1381  should_be_in_vg = false;
1382 
1383  // OK, after all that, append the variable to the vg if none of the conditions
1384  // were violated
1385  if (should_be_in_vg)
1386  {
1387  const unsigned int curr_n_vars = this->n_vars();
1388 
1389  std::string varstr(var);
1390 
1391  _variable_numbers[varstr] = curr_n_vars;
1392  vg.append (std::move(varstr));
1393  _variables.push_back(vg(vg.n_variables()-1));
1394 
1395  return curr_n_vars;
1396  }
1397  }
1398 
1399  // otherwise, fall back to adding a single variable group
1400  return this->add_variables (std::vector<std::string>(1, std::string(var)),
1401  type,
1402  active_subdomains);
1403 }
unsigned int add_variables(const std::vector< std::string > &vars, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1419
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
unsigned int n_variable_groups() const
Definition: system.h:2357
const Parallel::Communicator & comm() const
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140
std::vector< VariableGroup > _variable_groups
The VariableGroup in this System.
Definition: system.h:2145
bool is_initialized()
Definition: system.h:2333
libmesh_assert(ctx)
const std::string & variable_name(const unsigned int i) const
Definition: system.h:2397
bool identify_variable_groups() const
Definition: system.h:2445
const FEType & variable_type(const unsigned int i) const
Definition: system.h:2427
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349

◆ add_variable() [2/2]

unsigned int libMesh::System::add_variable ( std::string_view  var,
const Order  order = FIRST,
const FEFamily  family = LAGRANGE,
const std::set< subdomain_id_type > *const  active_subdomains = nullptr 
)
inherited

Adds the variable var to the list of variables for this system.

Same as before, but assumes LAGRANGE as default value for FEType.family. If active_subdomains is either nullptr (the default) or points to an empty set, then it will be assumed that var has no subdomain restrictions

Definition at line 1407 of file system.C.

References libMesh::System::add_variable().

1411 {
1412  return this->add_variable(var,
1413  FEType(order, family),
1414  active_subdomains);
1415 }
unsigned int add_variable(std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1305

◆ add_variables() [1/2]

unsigned int libMesh::System::add_variables ( const std::vector< std::string > &  vars,
const FEType type,
const std::set< subdomain_id_type > *const  active_subdomains = nullptr 
)
inherited

Adds the variable var to the list of variables for this system.

If active_subdomains is either nullptr (the default) or points to an empty set, then it will be assumed that var has no subdomain restrictions

Returns
The index number for the new variable.

Definition at line 1419 of file system.C.

References libMesh::System::_variable_groups, libMesh::System::_variable_numbers, libMesh::System::_variables, libMesh::ParallelObject::comm(), libMesh::System::identify_variable_groups(), libMesh::System::is_initialized(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::System::n_components(), libMesh::System::n_variable_groups(), libMesh::System::n_vars(), libMesh::System::variable_name(), and libMesh::System::variable_type().

Referenced by libMesh::System::add_variable(), libMesh::System::add_variables(), and SystemsTest::test100KVariables().

1422 {
1423  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1424 
1425  libmesh_assert(!this->is_initialized());
1426 
1427  libmesh_assert(this->comm().verify(vars.size()));
1428  libmesh_assert(this->comm().verify(type));
1429  libmesh_assert(this->comm().verify((active_subdomains == nullptr)));
1430 
1431  if (active_subdomains)
1432  libmesh_assert(this->comm().verify(active_subdomains->size()));
1433 
1434  // Make sure the variable isn't there already
1435  // or if it is, that it's the type we want
1436  for (auto ovar : vars)
1437  {
1438  libmesh_assert(this->comm().verify(ovar));
1439 
1440  for (auto v : make_range(this->n_vars()))
1441  if (this->variable_name(v) == ovar)
1442  {
1443  if (this->variable_type(v) == type)
1444  return _variables[v].number();
1445 
1446  libmesh_error_msg("ERROR: incompatible variable " << ovar << " has already been added for this system!");
1447  }
1448  }
1449 
1450  if (this->n_variable_groups())
1451  {
1452  // Optimize for VariableGroups here - if the user is adding multiple
1453  // variables of the same FEType and subdomain restriction, catch
1454  // that here and add them as members of the same VariableGroup.
1455  //
1456  // start by setting this flag to whatever the user has requested
1457  // and then consider the conditions which should negate it.
1458  bool should_be_in_vg = this->identify_variable_groups();
1459 
1460  VariableGroup & vg(_variable_groups.back());
1461 
1462  // get a pointer to their subdomain restriction, if any.
1463  const std::set<subdomain_id_type> * const
1464  their_active_subdomains (vg.implicitly_active() ?
1465  nullptr : &vg.active_subdomains());
1466 
1467  // Different types?
1468  if (vg.type() != type)
1469  should_be_in_vg = false;
1470 
1471  // they are restricted, we aren't?
1472  if (their_active_subdomains &&
1473  (!active_subdomains || (active_subdomains && active_subdomains->empty())))
1474  should_be_in_vg = false;
1475 
1476  // they aren't restricted, we are?
1477  if (!their_active_subdomains && (active_subdomains && !active_subdomains->empty()))
1478  should_be_in_vg = false;
1479 
1480  if (their_active_subdomains && active_subdomains)
1481  // restricted to different sets?
1482  if (*their_active_subdomains != *active_subdomains)
1483  should_be_in_vg = false;
1484 
1485  // If after all that none of the conditions were violated,
1486  // append the variables to the vg and we're done
1487  if (should_be_in_vg)
1488  {
1489  unsigned int curr_n_vars = this->n_vars();
1490 
1491  for (auto ovar : vars)
1492  {
1493  curr_n_vars = this->n_vars();
1494 
1495  vg.append (ovar);
1496 
1497  _variables.push_back(vg(vg.n_variables()-1));
1498  _variable_numbers[ovar] = curr_n_vars;
1499  }
1500  return curr_n_vars;
1501  }
1502  }
1503 
1504  const unsigned int curr_n_vars = this->n_vars();
1505 
1506  const unsigned int next_first_component = this->n_components();
1507 
1508  // We weren't able to add to an existing variable group, so
1509  // add a new variable group to the list
1510  _variable_groups.push_back((active_subdomains == nullptr) ?
1511  VariableGroup(this, vars, curr_n_vars,
1512  next_first_component, type) :
1513  VariableGroup(this, vars, curr_n_vars,
1514  next_first_component, type, *active_subdomains));
1515 
1516  const VariableGroup & vg (_variable_groups.back());
1517 
1518  // Add each component of the group individually
1519  for (auto v : make_range(vars.size()))
1520  {
1521  _variables.push_back (vg(v));
1522  _variable_numbers[vars[v]] = curr_n_vars+v;
1523  }
1524 
1525  libmesh_assert_equal_to ((curr_n_vars+vars.size()), this->n_vars());
1526 
1527  // BSK - Defer this now to System::init_data() so we can detect
1528  // VariableGroups 12/28/2012
1529  // // Add the variable group to the _dof_map
1530  // _dof_map->add_variable_group (vg);
1531 
1532  // Return the number of the new variable
1533  return cast_int<unsigned int>(curr_n_vars+vars.size()-1);
1534 }
unsigned int n_components() const
Definition: system.h:2365
unsigned int n_variable_groups() const
Definition: system.h:2357
const Parallel::Communicator & comm() const
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140
std::vector< VariableGroup > _variable_groups
The VariableGroup in this System.
Definition: system.h:2145
bool is_initialized()
Definition: system.h:2333
libmesh_assert(ctx)
const std::string & variable_name(const unsigned int i) const
Definition: system.h:2397
bool identify_variable_groups() const
Definition: system.h:2445
const FEType & variable_type(const unsigned int i) const
Definition: system.h:2427
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349

◆ add_variables() [2/2]

unsigned int libMesh::System::add_variables ( const std::vector< std::string > &  vars,
const Order  order = FIRST,
const FEFamily  family = LAGRANGE,
const std::set< subdomain_id_type > *const  active_subdomains = nullptr 
)
inherited

Adds the variable var to the list of variables for this system.

Same as before, but assumes LAGRANGE as default value for FEType.family. If active_subdomains is either nullptr (the default) or points to an empty set, then it will be assumed that var has no subdomain restrictions

Definition at line 1538 of file system.C.

References libMesh::System::add_variables().

1542 {
1543  return this->add_variables(vars,
1544  FEType(order, family),
1545  active_subdomains);
1546 }
unsigned int add_variables(const std::vector< std::string > &vars, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1419

◆ add_vector()

NumericVector< Number > & libMesh::System::add_vector ( std::string_view  vec_name,
const bool  projections = true,
const ParallelType  type = PARALLEL 
)
inherited

Adds the additional vector vec_name to this system.

All the additional vectors are similarly distributed, like the solution, and initialized to zero.

By default vectors added by add_vector are projected to changed grids by reinit(). To zero them instead (more efficient), pass "false" as the second argument

If the vector already exists, the existing vector is returned. after any upgrade to the projections or type has been made. We only handle upgrades (projections false->true, or type PARALLEL->GHOSTED) in this fashion, not downgrades, on the theory that if two codes have differing needs we want to support the union of those needs, not the intersection. Downgrades can only be accomplished manually, via set_vector_preservation() or by setting a vector type() and re-initializing.

Definition at line 751 of file system.C.

References libMesh::System::_dof_map, libMesh::System::_is_initialized, libMesh::System::_vector_is_adjoint, libMesh::System::_vector_projections, libMesh::System::_vectors, libMesh::NumericVector< T >::build(), libMesh::NumericVector< T >::close(), libMesh::NumericVector< T >::closed(), libMesh::ParallelObject::comm(), libMesh::GHOSTED, libMesh::NumericVector< T >::initialized(), libMesh::libmesh_assert(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::ParallelObject::n_processors(), libMesh::PARALLEL, libMesh::SERIAL, libMesh::NumericVector< T >::swap(), and libMesh::NumericVector< T >::type().

Referenced by libMesh::System::add_adjoint_rhs(), libMesh::System::add_adjoint_solution(), libMesh::System::add_sensitivity_rhs(), libMesh::System::add_sensitivity_solution(), libMesh::ExplicitSystem::add_system_rhs(), libMesh::System::add_weighted_sensitivity_adjoint_solution(), libMesh::System::add_weighted_sensitivity_solution(), alternative_fe_assembly(), libMesh::AdjointRefinementEstimator::estimate_error(), fe_assembly(), libMesh::SecondOrderUnsteadySolver::init(), libMesh::UnsteadySolver::init(), libMesh::UnsteadySolver::init_adjoints(), libMesh::TimeSolver::init_adjoints(), libMesh::OptimizationSystem::init_data(), libMesh::ContinuationSystem::init_data(), main(), libMesh::NewmarkSystem::NewmarkSystem(), libMesh::System::read_header(), libMesh::FrequencySystem::set_frequencies(), libMesh::FrequencySystem::set_frequencies_by_range(), libMesh::FrequencySystem::set_frequencies_by_steps(), SystemsTest::testAddVectorProjChange(), SystemsTest::testAddVectorTypeChange(), SystemsTest::testPostInitAddVector(), and SystemsTest::testPostInitAddVectorTypeChange().

754 {
755  parallel_object_only();
756 
757  libmesh_assert(this->comm().verify(std::string(vec_name)));
758  libmesh_assert(this->comm().verify(int(type)));
759  libmesh_assert(this->comm().verify(projections));
760 
761  // Return the vector if it is already there.
762  auto it = this->_vectors.find(vec_name);
763  if (it != this->_vectors.end())
764  {
765  // If the projection setting has *upgraded*, change it.
766  if (projections) // only do expensive lookup if needed
767  libmesh_map_find(_vector_projections, vec_name) = projections;
768 
769  NumericVector<Number> & vec = *it->second;
770 
771  // If we're in serial, our vectors are effectively SERIAL, so
772  // we'll ignore any type setting. If we're in parallel, we
773  // might have a type change to deal with.
774 
775  if (this->n_processors() > 1)
776  {
777  // If the type setting has changed in a way we can't
778  // perceive as an upgrade or a downgrade, scream.
779  libmesh_assert_equal_to(type == SERIAL,
780  vec.type() == SERIAL);
781 
782  // If the type setting has *upgraded*, change it.
783  if (type == GHOSTED && vec.type() == PARALLEL)
784  {
785  // A *really* late upgrade is expensive, but better not
786  // to risk zeroing data.
787  if (vec.initialized())
788  {
789  if (!vec.closed())
790  vec.close();
791 
792  // Ideally we'd move parallel coefficients and then
793  // add ghosted coefficients, but copy and swap is
794  // simpler. If anyone actually ever uses this case
795  // for real we can look into optimizing it.
796  auto new_vec = NumericVector<Number>::build(this->comm());
797 #ifdef LIBMESH_ENABLE_GHOSTED
798  new_vec->init (this->n_dofs(), this->n_local_dofs(),
799  _dof_map->get_send_list(), /*fast=*/false,
800  GHOSTED);
801 #else
802  libmesh_error_msg("Cannot initialize ghosted vectors when they are not enabled.");
803 #endif
804 
805  *new_vec = vec;
806  vec.swap(*new_vec);
807  }
808  else
809  vec.type() = type;
810  }
811  }
812 
813  // Any upgrades are done; we're happy here.
814  return vec;
815  }
816 
817  // Otherwise build the vector
818  auto pr = _vectors.emplace(vec_name, NumericVector<Number>::build(this->comm()));
819  auto buf = pr.first->second.get();
820  _vector_projections.emplace(vec_name, projections);
821  buf->type() = type;
822 
823  // Vectors are primal by default
824  _vector_is_adjoint.emplace(vec_name, -1);
825 
826  // Initialize it if necessary
827  if (_is_initialized)
828  {
829  if (type == GHOSTED)
830  {
831 #ifdef LIBMESH_ENABLE_GHOSTED
832  buf->init (this->n_dofs(), this->n_local_dofs(),
833  _dof_map->get_send_list(), /*fast=*/false,
834  GHOSTED);
835 #else
836  libmesh_error_msg("Cannot initialize ghosted vectors when they are not enabled.");
837 #endif
838  }
839  else
840  buf->init (this->n_dofs(), this->n_local_dofs(), false, type);
841  }
842 
843  return *buf;
844 }
bool _is_initialized
true when additional vectors and variables do not require immediate initialization, false otherwise.
Definition: system.h:2210
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
const Parallel::Communicator & comm() const
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
processor_id_type n_processors() const
std::map< std::string, int, std::less<> > _vector_is_adjoint
Holds non-negative if a vector by that name should be projected using adjoint constraints/BCs, -1 if primal.
Definition: system.h:2176
libmesh_assert(ctx)
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
template class LIBMESH_EXPORT NumericVector< Number >
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ add_weighted_sensitivity_adjoint_solution()

NumericVector< Number > & libMesh::System::add_weighted_sensitivity_adjoint_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's weighted sensitivity adjoint solution vectors, by default the one corresponding to the first qoi. Creates the vector if it doesn't already exist.

Definition at line 1213 of file system.C.

References libMesh::System::add_vector(), and libMesh::System::set_vector_as_adjoint().

Referenced by libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve().

1214 {
1215  std::ostringstream adjoint_name;
1216  adjoint_name << "weighted_sensitivity_adjoint_solution" << i;
1217 
1218  NumericVector<Number> & returnval = this->add_vector(adjoint_name.str());
1219  this->set_vector_as_adjoint(adjoint_name.str(), i);
1220  return returnval;
1221 }
void set_vector_as_adjoint(const std::string &vec_name, int qoi_num)
Allows one to set the QoI index controlling whether the vector identified by vec_name represents a so...
Definition: system.C:1107
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751
template class LIBMESH_EXPORT NumericVector< Number >

◆ add_weighted_sensitivity_solution()

NumericVector< Number > & libMesh::System::add_weighted_sensitivity_solution ( )
inherited
Returns
A reference to the solution of the last weighted sensitivity solve Creates the vector if it doesn't already exist.

Definition at line 1160 of file system.C.

References libMesh::System::add_vector().

Referenced by libMesh::ImplicitSystem::weighted_sensitivity_solve().

1161 {
1162  return this->add_vector("weighted_sensitivity_solution");
1163 }
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751

◆ adjoint_qoi_parameter_sensitivity()

void libMesh::System::adjoint_qoi_parameter_sensitivity ( const QoISet qoi_indices,
const ParameterVector parameters,
SensitivityData sensitivities 
)
inlinevirtualinherited

Solves for parameter sensitivities using the adjoint method.

This method is only implemented in some derived classes.

Reimplemented in libMesh::ImplicitSystem.

Definition at line 2558 of file system.h.

Referenced by libMesh::System::qoi_parameter_sensitivity().

2561 {
2562  libmesh_not_implemented();
2563 }

◆ adjoint_solve()

std::pair< unsigned int, Real > libMesh::System::adjoint_solve ( const QoISet qoi_indices = QoISet())
inlinevirtualinherited

Solves the adjoint system, for the specified qoi indices, or for every qoi if qoi_indices is nullptr.

Must be overridden in derived systems.

Returns
A pair with the total number of linear iterations performed and the (sum of the) final residual norms

This method is only implemented in some derived classes.

Reimplemented in libMesh::ImplicitSystem, and libMesh::DifferentiableSystem.

Definition at line 2542 of file system.h.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), and libMesh::AdjointResidualErrorEstimator::estimate_error().

2543 {
2544  libmesh_not_implemented();
2545 }

◆ Aq_inner_product()

Number libMesh::RBSCMConstruction::Aq_inner_product ( unsigned int  q,
const NumericVector< Number > &  v,
const NumericVector< Number > &  w 
)
protected

Compute the inner product between two vectors using matrix Aq.

Definition at line 405 of file rb_scm_construction.C.

References add_scaled_symm_Aq(), libMesh::NumericVector< T >::dot(), get_rb_theta_expansion(), libMesh::RBConstructionBase< CondensedEigenSystem >::inner_product_storage_vector, libMesh::EigenSystem::matrix_A, libMesh::SparseMatrix< T >::vector_mult(), and libMesh::SparseMatrix< T >::zero().

Referenced by evaluate_stability_constant().

408 {
409  libmesh_error_msg_if(q >= get_rb_theta_expansion().get_n_A_terms(),
410  "Error: We must have q < Q_a in Aq_inner_product.");
411 
412  matrix_A->zero();
413  add_scaled_symm_Aq(q, 1.);
415 
417 }
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
virtual T dot(const NumericVector< T > &v) const =0
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
virtual void zero()=0
Set all entries to 0.
SparseMatrix< Number > * matrix_A
The system matrix for standard eigenvalue problems.
Definition: eigen_system.h:313
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object.
virtual void add_scaled_symm_Aq(unsigned int q_a, Number scalar)
Add the scaled symmetrized affine matrix from the associated RBSystem to matrix_A.

◆ assemble()

void libMesh::System::assemble ( )
virtualinherited

Prepares matrix and _dof_map for matrix assembly.

Does not actually assemble anything. For matrix assembly, use the assemble() in derived classes. Should be overridden in derived classes.

Reimplemented in libMesh::LinearImplicitSystem, libMesh::DifferentiableSystem, libMesh::ImplicitSystem, libMesh::FrequencySystem, and libMesh::NewmarkSystem.

Definition at line 549 of file system.C.

References libMesh::System::user_assembly().

Referenced by libMesh::ImplicitSystem::assemble(), libMesh::EigenSystem::solve(), libMesh::CondensedEigenSystem::solve(), and libMesh::ExplicitSystem::solve().

550 {
551  // Log how long the user's assembly code takes
552  LOG_SCOPE("assemble()", "System");
553 
554  // Call the user-specified assembly function
555  this->user_assembly();
556 }
virtual void user_assembly()
Calls user&#39;s attached assembly function, or is overridden by the user in derived classes.
Definition: system.C:2259

◆ assemble_qoi()

void libMesh::System::assemble_qoi ( const QoISet qoi_indices = QoISet())
virtualinherited

Calls user qoi function.

Can be overridden in derived classes.

Reimplemented in libMesh::FEMSystem, and libMesh::ExplicitSystem.

Definition at line 560 of file system.C.

References libMesh::System::user_QOI().

Referenced by libMesh::ExplicitSystem::assemble_qoi().

561 {
562  // Log how long the user's assembly code takes
563  LOG_SCOPE("assemble_qoi()", "System");
564 
565  // Call the user-specified quantity of interest function
566  this->user_QOI(qoi_indices);
567 }
virtual void user_QOI(const QoISet &qoi_indices)
Calls user&#39;s attached quantity of interest function, or is overridden by the user in derived classes...
Definition: system.C:2287

◆ assemble_qoi_derivative()

void libMesh::System::assemble_qoi_derivative ( const QoISet qoi_indices = QoISet(),
bool  include_liftfunc = true,
bool  apply_constraints = true 
)
virtualinherited

Calls user qoi derivative function.

Can be overridden in derived classes.

Reimplemented in libMesh::FEMSystem, and libMesh::ExplicitSystem.

Definition at line 571 of file system.C.

References libMesh::System::user_QOI_derivative().

Referenced by libMesh::ExplicitSystem::assemble_qoi_derivative().

574 {
575  // Log how long the user's assembly code takes
576  LOG_SCOPE("assemble_qoi_derivative()", "System");
577 
578  // Call the user-specified quantity of interest function
579  this->user_QOI_derivative(qoi_indices, include_liftfunc,
580  apply_constraints);
581 }
virtual void user_QOI_derivative(const QoISet &qoi_indices=QoISet(), bool include_liftfunc=true, bool apply_constraints=true)
Calls user&#39;s attached quantity of interest derivative function, or is overridden by the user in deriv...
Definition: system.C:2301

◆ assemble_residual_derivatives()

void libMesh::System::assemble_residual_derivatives ( const ParameterVector parameters)
inlinevirtualinherited

Calls residual parameter derivative function.

Library subclasses use finite differences by default.

This should assemble the sensitivity rhs vectors to hold -(partial R / partial p_i), making them ready to solve the forward sensitivity equation.

This method is only implemented in some derived classes.

Reimplemented in libMesh::ImplicitSystem.

Definition at line 2507 of file system.h.

2508 {
2509  libmesh_not_implemented();
2510 }

◆ attach_assemble_function()

void libMesh::System::attach_assemble_function ( void   fptrEquationSystems &es, const std::string &name)
inherited

Register a user function to use in assembling the system matrix and RHS.

Definition at line 2109 of file system.C.

References libMesh::System::_assemble_system_function, libMesh::System::_assemble_system_object, fptr(), and libMesh::libmesh_assert().

Referenced by assemble_and_solve(), main(), ConstraintOperatorTest::test1DCoarseningNewNodes(), ConstraintOperatorTest::test1DCoarseningOperator(), SystemsTest::testAssemblyWithDgFemContext(), SystemsTest::testDofCouplingWithVarGroups(), and PeriodicBCTest::testPeriodicBC().

2111 {
2113 
2114  if (_assemble_system_object != nullptr)
2115  {
2116  libmesh_warning("WARNING: Cannot specify both assembly function and object!");
2117 
2118  _assemble_system_object = nullptr;
2119  }
2120 
2122 }
Assembly * _assemble_system_object
Object that assembles the system.
Definition: system.h:2070
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
libmesh_assert(ctx)
void(* _assemble_system_function)(EquationSystems &es, const std::string &name)
Function that assembles the system.
Definition: system.h:2064

◆ attach_assemble_object()

void libMesh::System::attach_assemble_object ( System::Assembly assemble_in)
inherited

Register a user object to use in assembling the system matrix and RHS.

Definition at line 2126 of file system.C.

References libMesh::System::_assemble_system_function, and libMesh::System::_assemble_system_object.

Referenced by main().

2127 {
2128  if (_assemble_system_function != nullptr)
2129  {
2130  libmesh_warning("WARNING: Cannot specify both assembly object and function!");
2131 
2132  _assemble_system_function = nullptr;
2133  }
2134 
2135  _assemble_system_object = &assemble_in;
2136 }
Assembly * _assemble_system_object
Object that assembles the system.
Definition: system.h:2070
void(* _assemble_system_function)(EquationSystems &es, const std::string &name)
Function that assembles the system.
Definition: system.h:2064

◆ attach_constraint_function()

void libMesh::System::attach_constraint_function ( void   fptrEquationSystems &es, const std::string &name)
inherited

Register a user function for imposing constraints.

Definition at line 2140 of file system.C.

References libMesh::System::_constrain_system_function, libMesh::System::_constrain_system_object, fptr(), and libMesh::libmesh_assert().

2142 {
2144 
2145  if (_constrain_system_object != nullptr)
2146  {
2147  libmesh_warning("WARNING: Cannot specify both constraint function and object!");
2148 
2149  _constrain_system_object = nullptr;
2150  }
2151 
2153 }
void(* _constrain_system_function)(EquationSystems &es, const std::string &name)
Function to impose constraints.
Definition: system.h:2075
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
libmesh_assert(ctx)

◆ attach_constraint_object()

void libMesh::System::attach_constraint_object ( System::Constraint constrain)
inherited

Register a user object for imposing constraints.

Definition at line 2157 of file system.C.

References libMesh::System::_constrain_system_function, and libMesh::System::_constrain_system_object.

Referenced by DofMapTest::testConstraintLoopDetection().

2158 {
2159  if (_constrain_system_function != nullptr)
2160  {
2161  libmesh_warning("WARNING: Cannot specify both constraint object and function!");
2162 
2163  _constrain_system_function = nullptr;
2164  }
2165 
2166  _constrain_system_object = &constrain;
2167 }
void(* _constrain_system_function)(EquationSystems &es, const std::string &name)
Function to impose constraints.
Definition: system.h:2075
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081

◆ attach_deflation_space()

virtual void libMesh::RBSCMConstruction::attach_deflation_space ( )
inlinevirtual

Attach the deflation space defined by the specified vector, can be useful in solving constrained eigenvalue problems.

This function is called at the start of perform_SCM_greedy and by default is does nothing. Override in subclass to attach a specific vector.

Definition at line 162 of file rb_scm_construction.h.

Referenced by perform_SCM_greedy().

162 {}

◆ attach_init_function()

void libMesh::System::attach_init_function ( void   fptrEquationSystems &es, const std::string &name)
inherited

Register a user function to use in initializing the system.

Definition at line 2078 of file system.C.

References libMesh::System::_init_system_function, libMesh::System::_init_system_object, fptr(), and libMesh::libmesh_assert().

Referenced by main().

2080 {
2082 
2083  if (_init_system_object != nullptr)
2084  {
2085  libmesh_warning("WARNING: Cannot specify both initialization function and object!");
2086 
2087  _init_system_object = nullptr;
2088  }
2089 
2091 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
libmesh_assert(ctx)
Initialization * _init_system_object
Object that initializes the system.
Definition: system.h:2059
void(* _init_system_function)(EquationSystems &es, const std::string &name)
Function that initializes the system.
Definition: system.h:2053

◆ attach_init_object()

void libMesh::System::attach_init_object ( System::Initialization init_in)
inherited

Register a user class to use to initialize the system.

Note
This is exclusive with the attach_init_function.

Definition at line 2095 of file system.C.

References libMesh::System::_init_system_function, and libMesh::System::_init_system_object.

2096 {
2097  if (_init_system_function != nullptr)
2098  {
2099  libmesh_warning("WARNING: Cannot specify both initialization object and function!");
2100 
2101  _init_system_function = nullptr;
2102  }
2103 
2104  _init_system_object = &init_in;
2105 }
Initialization * _init_system_object
Object that initializes the system.
Definition: system.h:2059
void(* _init_system_function)(EquationSystems &es, const std::string &name)
Function that initializes the system.
Definition: system.h:2053

◆ attach_QOI_derivative()

void libMesh::System::attach_QOI_derivative ( void   fptrEquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)
inherited

Register a user function for evaluating derivatives of a quantity of interest with respect to test functions, whose values should be placed in System::rhs.

Definition at line 2214 of file system.C.

References libMesh::System::_qoi_evaluate_derivative_function, libMesh::System::_qoi_evaluate_derivative_object, fptr(), and libMesh::libmesh_assert().

2216 {
2218 
2219  if (_qoi_evaluate_derivative_object != nullptr)
2220  {
2221  libmesh_warning("WARNING: Cannot specify both QOI derivative function and object!");
2222 
2224  }
2225 
2227 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
QOIDerivative * _qoi_evaluate_derivative_object
Object to compute derivatives of quantities of interest.
Definition: system.h:2107
libmesh_assert(ctx)
void(* _qoi_evaluate_derivative_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)
Function to evaluate quantity of interest derivative.
Definition: system.h:2098

◆ attach_QOI_derivative_object()

void libMesh::System::attach_QOI_derivative_object ( QOIDerivative qoi_derivative)
inherited

Register a user object for evaluating derivatives of a quantity of interest with respect to test functions, whose values should be placed in System::rhs.

Definition at line 2231 of file system.C.

References libMesh::System::_qoi_evaluate_derivative_function, and libMesh::System::_qoi_evaluate_derivative_object.

2232 {
2233  if (_qoi_evaluate_derivative_function != nullptr)
2234  {
2235  libmesh_warning("WARNING: Cannot specify both QOI derivative object and function!");
2236 
2238  }
2239 
2240  _qoi_evaluate_derivative_object = &qoi_derivative;
2241 }
QOIDerivative * _qoi_evaluate_derivative_object
Object to compute derivatives of quantities of interest.
Definition: system.h:2107
void(* _qoi_evaluate_derivative_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)
Function to evaluate quantity of interest derivative.
Definition: system.h:2098

◆ attach_QOI_function()

void libMesh::System::attach_QOI_function ( void   fptrEquationSystems &es, const std::string &name, const QoISet &qoi_indices)
inherited

Register a user function for evaluating the quantities of interest, whose values should be placed in System::qoi.

Definition at line 2182 of file system.C.

References libMesh::System::_qoi_evaluate_function, libMesh::System::_qoi_evaluate_object, fptr(), and libMesh::libmesh_assert().

2185 {
2187 
2188  if (_qoi_evaluate_object != nullptr)
2189  {
2190  libmesh_warning("WARNING: Cannot specify both QOI function and object!");
2191 
2192  _qoi_evaluate_object = nullptr;
2193  }
2194 
2196 }
void(* _qoi_evaluate_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices)
Function to evaluate quantity of interest.
Definition: system.h:2086
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
libmesh_assert(ctx)
QOI * _qoi_evaluate_object
Object to compute quantities of interest.
Definition: system.h:2093

◆ attach_QOI_object()

void libMesh::System::attach_QOI_object ( QOI qoi)
inherited

Register a user object for evaluating the quantities of interest, whose values should be placed in System::qoi.

Definition at line 2200 of file system.C.

References libMesh::System::_qoi_evaluate_function, and libMesh::System::_qoi_evaluate_object.

2201 {
2202  if (_qoi_evaluate_function != nullptr)
2203  {
2204  libmesh_warning("WARNING: Cannot specify both QOI object and function!");
2205 
2206  _qoi_evaluate_function = nullptr;
2207  }
2208 
2209  _qoi_evaluate_object = &qoi_in;
2210 }
void(* _qoi_evaluate_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices)
Function to evaluate quantity of interest.
Definition: system.h:2086
QOI * _qoi_evaluate_object
Object to compute quantities of interest.
Definition: system.h:2093

◆ B_inner_product()

Number libMesh::RBSCMConstruction::B_inner_product ( const NumericVector< Number > &  v,
const NumericVector< Number > &  w 
) const
protected

Compute the inner product between two vectors using the system's matrix_B.

Definition at line 397 of file rb_scm_construction.C.

References libMesh::NumericVector< T >::dot(), libMesh::RBConstructionBase< CondensedEigenSystem >::inner_product_storage_vector, libMesh::EigenSystem::matrix_B, and libMesh::SparseMatrix< T >::vector_mult().

Referenced by evaluate_stability_constant().

399 {
401 
403 }
SparseMatrix< Number > * matrix_B
A second system matrix for generalized eigenvalue problems.
Definition: eigen_system.h:321
void vector_mult(NumericVector< T > &dest, const NumericVector< T > &arg) const
Multiplies the matrix by the NumericVector arg and stores the result in NumericVector dest...
virtual T dot(const NumericVector< T > &v) const =0
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...

◆ boundary_project_solution() [1/2]

void libMesh::System::boundary_project_solution ( const std::set< boundary_id_type > &  b,
const std::vector< unsigned int > &  variables,
FunctionBase< Number > *  f,
FunctionBase< Gradient > *  g = nullptr 
)
inherited

Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary boundary function onto the solution via L2 projections and nodal interpolations on each element.

Only degrees of freedom which affect the function's trace on a boundary in the set b are affected. Only degrees of freedom associated with the variables listed in the vector variables are projected. The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Definition at line 1244 of file system_projection.C.

Referenced by SystemsTest::testBoundaryProjectCube().

1248 {
1249  this->boundary_project_vector(b, variables, *solution, f, g);
1250 
1251  solution->localize(*current_local_solution);
1252 }
void boundary_project_vector(const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary boundary functions onto a vector of degree of freedom values for the current syste...
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585

◆ boundary_project_solution() [2/2]

void libMesh::System::boundary_project_solution ( const std::set< boundary_id_type > &  b,
const std::vector< unsigned int > &  variables,
ValueFunctionPointer  fptr,
GradientFunctionPointer  gptr,
const Parameters parameters 
)
inherited

Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system.

This method projects components of an arbitrary boundary function onto the solution via L2 projections and nodal interpolations on each element.

Only degrees of freedom which affect the function's trace on a boundary in the set b are affected. Only degrees of freedom associated with the variables listed in the vector variables are projected. The function value fptr and its gradient gptr are represented by function pointers. A gradient gptr is only required/used for projecting onto finite element spaces with continuous derivatives.

Definition at line 1227 of file system_projection.C.

References fptr(), and gptr().

1232 {
1233  WrappedFunction<Number> f(*this, fptr, &parameters);
1234  WrappedFunction<Gradient> g(*this, gptr, &parameters);
1235  this->boundary_project_solution(b, variables, &f, &g);
1236 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
Gradient gptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:95
void boundary_project_solution(const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr)
Projects arbitrary boundary functions onto a vector of degree of freedom values for the current syste...

◆ boundary_project_vector() [1/2]

void libMesh::System::boundary_project_vector ( const std::set< boundary_id_type > &  b,
const std::vector< unsigned int > &  variables,
NumericVector< Number > &  new_vector,
FunctionBase< Number > *  f,
FunctionBase< Gradient > *  g = nullptr,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary function via L2 projections and nodal interpolations on each element.

Only degrees of freedom which affect the function's trace on a boundary in the set b are affected. Only degrees of freedom associated with the variables listed in the vector variables are projected. The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1280 of file system_projection.C.

References libMesh::NumericVector< T >::close(), libMesh::libmesh_ignore(), and libMesh::Threads::parallel_for().

1286 {
1287  LOG_SCOPE ("boundary_project_vector()", "System");
1288 
1290  (ConstElemRange (this->get_mesh().active_local_elements_begin(),
1291  this->get_mesh().active_local_elements_end() ),
1292  BoundaryProjectSolution(b, variables, *this, f, g,
1293  this->get_equation_systems().parameters,
1294  new_vector)
1295  );
1296 
1297  // We don't do SCALAR dofs when just projecting the boundary, so
1298  // we're done here.
1299 
1300  new_vector.close();
1301 
1302 #ifdef LIBMESH_ENABLE_CONSTRAINTS
1303  if (is_adjoint == -1)
1304  this->get_dof_map().enforce_constraints_exactly(*this, &new_vector);
1305  else if (is_adjoint >= 0)
1307  is_adjoint);
1308 #else
1309  libmesh_ignore(is_adjoint);
1310 #endif
1311 }
void parallel_for(const Range &range, const Body &body)
Execute the provided function object in parallel on the specified range.
Definition: threads_none.h:73
const EquationSystems & get_equation_systems() const
Definition: system.h:730
const MeshBase & get_mesh() const
Definition: system.h:2277
StoredRange< MeshBase::const_element_iterator, const Elem * > ConstElemRange
Definition: elem_range.h:34
void enforce_adjoint_constraints_exactly(NumericVector< Number > &v, unsigned int q) const
Heterogeneously constrains the numeric vector v, which represents an adjoint solution defined on the ...
Definition: dof_map.h:2278
void libmesh_ignore(const Args &...)
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
const DofMap & get_dof_map() const
Definition: system.h:2293
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274

◆ boundary_project_vector() [2/2]

void libMesh::System::boundary_project_vector ( const std::set< boundary_id_type > &  b,
const std::vector< unsigned int > &  variables,
ValueFunctionPointer  fptr,
GradientFunctionPointer  gptr,
const Parameters parameters,
NumericVector< Number > &  new_vector,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary boundary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary boundary function via L2 projections and nodal interpolations on each element.

Only degrees of freedom which affect the function's trace on a boundary in the set b are affected. Only degrees of freedom associated with the variables listed in the vector variables are projected. The function value fptr and its gradient gptr are represented by function pointers. A gradient gptr is only required/used for projecting onto finite element spaces with continuous derivatives.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1262 of file system_projection.C.

References fptr(), and gptr().

1269 {
1270  WrappedFunction<Number> f(*this, fptr, &parameters);
1271  WrappedFunction<Gradient> g(*this, gptr, &parameters);
1272  this->boundary_project_vector(b, variables, new_vector, &f, &g,
1273  is_adjoint);
1274 }
void boundary_project_vector(const std::set< boundary_id_type > &b, const std::vector< unsigned int > &variables, NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary boundary functions onto a vector of degree of freedom values for the current syste...
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
Gradient gptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:95

◆ broadcast_parameters()

void libMesh::RBConstructionBase< CondensedEigenSystem >::broadcast_parameters ( const unsigned int  proc_id)
inherited

Broadcasts parameters from processor proc_id to all processors.

This broadcasts the RBParameters object from .get_parameters(), and then sets it on all processors with .set_parameters().

Definition at line 712 of file rb_construction_base.C.

References libMesh::make_range(), libMesh::RBParameters::n_parameters(), libMesh::RBParameters::n_samples(), and libMesh::MeshTools::Subdivision::next.

713 {
714  libmesh_assert_less (proc_id, this->n_processors());
715 
716  // create a copy of the current parameters
717  RBParameters current_parameters = get_parameters();
718  libmesh_error_msg_if(current_parameters.n_samples()!=1,
719  "Only single-sample RBParameter objects can be broadcast.");
720 
721  // Serialize the current_parameters to current_parameters_vector in order to broadcast.
722  // We handle multiple samples and vector values.
723  // However, the vector values are assumed to remain the same size across samples.
724  const std::size_t nparams = current_parameters.n_parameters();
725  const std::size_t nsamples = current_parameters.n_samples();
726 
727  // First we get the sizes of all the parameter value vectors.
728  std::vector<std::size_t> param_value_sizes;
729  param_value_sizes.reserve(nparams);
730  for (const auto & pr : current_parameters)
731  param_value_sizes.push_back(pr.second[0].size());
732 
733  // Broadcast the sizes vector and reserve memory.
734  this->comm().broadcast(param_value_sizes, proc_id);
735  std::size_t buffsize = std::accumulate(param_value_sizes.cbegin(), param_value_sizes.cend(), 0ul);
736  std::vector<Real> serialized_parameters;
737  serialized_parameters.reserve(buffsize);
738 
739  // Then we serialize the parameters/sample/value vectors into a single vector.
740  for (const auto & pr : current_parameters)
741  {
742  for (const auto sample_idx : make_range(nsamples))
743  serialized_parameters.insert(serialized_parameters.end(),
744  pr.second[sample_idx].cbegin(),
745  pr.second[sample_idx].cend());
746  }
747 
748  // Do the broadcasts.
749  this->comm().broadcast(serialized_parameters, proc_id);
750 
751  // Deserialize into the copy of the RBParameters object.
752  std::size_t param_idx = 0;
753  auto val_idx = serialized_parameters.cbegin();
754  for (const auto & pr : current_parameters)
755  {
756  const std::size_t param_value_size = param_value_sizes[param_idx];
757  for (const auto sample_idx: make_range(nsamples))
758  {
759  auto end_val_idx = std::next(val_idx,param_value_size);
760  RBParameter sample_val(val_idx, end_val_idx);
761  current_parameters.set_value(pr.first, sample_idx, sample_val);
762  val_idx = end_val_idx;
763  }
764  ++param_idx;
765  }
766 
767  // Overwrite the parameters globally.
768  set_parameters(current_parameters);
769 }
const Parallel::Communicator & comm() const
processor_id_type n_processors() const
std::vector< Real > RBParameter
Typedef for an individual RB parameter.
Definition: rb_parameters.h:39
const RBParameters & get_parameters() const
Get the current parameters.
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
bool set_parameters(const RBParameters &params)
Set the current parameters to params The parameters are checked for validity; an error is thrown if t...
static const unsigned int next[3]
A lookup table for the increment modulo 3 operation, for iterating through the three nodes per elemen...
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134

◆ calculate_norm() [1/2]

Real libMesh::System::calculate_norm ( const NumericVector< Number > &  v,
unsigned int  var,
FEMNormType  norm_type,
std::set< unsigned int > *  skip_dimensions = nullptr 
) const
inherited
Returns
A norm of variable var in the vector v, in the specified norm (e.g. L2, L_INF, H1)

Definition at line 1672 of file system.C.

References libMesh::DISCRETE_L1, libMesh::DISCRETE_L2, libMesh::DISCRETE_L_INF, libMesh::System::discrete_var_norm(), libMesh::L2, libMesh::System::n_vars(), and libMesh::Real.

Referenced by libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::AdaptiveTimeSolver::calculate_norm(), libMesh::UnsteadySolver::du(), main(), output_norms(), and MeshInputTest::testProjectionRegression().

1676 {
1677  //short circuit to save time
1678  if (norm_type == DISCRETE_L1 ||
1679  norm_type == DISCRETE_L2 ||
1680  norm_type == DISCRETE_L_INF)
1681  return discrete_var_norm(v,var,norm_type);
1682 
1683  // Not a discrete norm
1684  std::vector<FEMNormType> norms(this->n_vars(), L2);
1685  std::vector<Real> weights(this->n_vars(), 0.0);
1686  norms[var] = norm_type;
1687  weights[var] = 1.0;
1688  Real val = this->calculate_norm(v, SystemNorm(norms, weights), skip_dimensions);
1689  return val;
1690 }
Real calculate_norm(const NumericVector< Number > &v, unsigned int var, FEMNormType norm_type, std::set< unsigned int > *skip_dimensions=nullptr) const
Definition: system.C:1672
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Real discrete_var_norm(const NumericVector< Number > &v, unsigned int var, FEMNormType norm_type) const
Finds the discrete norm for the entries in the vector corresponding to Dofs associated with var...
Definition: system.C:1653
unsigned int n_vars() const
Definition: system.h:2349

◆ calculate_norm() [2/2]

Real libMesh::System::calculate_norm ( const NumericVector< Number > &  v,
const SystemNorm norm,
std::set< unsigned int > *  skip_dimensions = nullptr 
) const
inherited
Returns
A norm of the vector v, using component_norm and component_scale to choose and weight the norms of each variable.

Definition at line 1694 of file system.C.

References libMesh::System::_dof_map, libMesh::System::_mesh, libMesh::FEGenericBase< OutputType >::build(), libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::FEType::default_quadrature_rule(), dim, libMesh::DISCRETE_L1, libMesh::DISCRETE_L2, libMesh::DISCRETE_L_INF, libMesh::System::discrete_var_norm(), libMesh::DofMap::dof_indices(), libMesh::MeshBase::elem_dimensions(), libMesh::Utility::enum_to_string(), libMesh::FEInterface::field_type(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::GHOSTED, libMesh::H1, libMesh::H1_SEMINORM, libMesh::H2, libMesh::H2_SEMINORM, libMesh::L1, libMesh::NumericVector< T >::l1_norm(), libMesh::L2, libMesh::NumericVector< T >::l2_norm(), libMesh::L_INF, libMesh::libmesh_assert(), libMesh::NumericVector< T >::linfty_norm(), libMesh::NumericVector< T >::local_size(), libMesh::NumericVector< T >::localize(), libMesh::make_range(), TIMPI::Communicator::max(), libMesh::System::n_vars(), libMesh::TensorTools::norm(), libMesh::TensorTools::norm_sq(), libMesh::Real, libMesh::NumericVector< T >::size(), std::sqrt(), TIMPI::Communicator::sum(), libMesh::TYPE_SCALAR, libMesh::TYPE_VECTOR, libMesh::DofMap::variable_type(), libMesh::W1_INF_SEMINORM, libMesh::W2_INF_SEMINORM, and libMesh::SystemNorm::weight().

1697 {
1698  // This function must be run on all processors at once
1699  parallel_object_only();
1700 
1701  LOG_SCOPE ("calculate_norm()", "System");
1702 
1703  // Zero the norm before summation
1704  Real v_norm = 0.;
1705 
1706  if (norm.is_discrete())
1707  {
1708  //Check to see if all weights are 1.0 and all types are equal
1709  FEMNormType norm_type0 = norm.type(0);
1710  unsigned int check_var = 0, check_end = this->n_vars();
1711  for (; check_var != check_end; ++check_var)
1712  if ((norm.weight(check_var) != 1.0) || (norm.type(check_var) != norm_type0))
1713  break;
1714 
1715  //All weights were 1.0 so just do the full vector discrete norm
1716  if (check_var == this->n_vars())
1717  {
1718  if (norm_type0 == DISCRETE_L1)
1719  return v.l1_norm();
1720  if (norm_type0 == DISCRETE_L2)
1721  return v.l2_norm();
1722  if (norm_type0 == DISCRETE_L_INF)
1723  return v.linfty_norm();
1724  else
1725  libmesh_error_msg("Invalid norm_type0 = " << Utility::enum_to_string(norm_type0));
1726  }
1727 
1728  for (auto var : make_range(this->n_vars()))
1729  {
1730  // Skip any variables we don't need to integrate
1731  if (norm.weight(var) == 0.0)
1732  continue;
1733 
1734  v_norm += norm.weight(var) * discrete_var_norm(v, var, norm.type(var));
1735  }
1736 
1737  return v_norm;
1738  }
1739 
1740  // Localize the potentially parallel vector
1741  std::unique_ptr<NumericVector<Number>> local_v = NumericVector<Number>::build(this->comm());
1742  local_v->init(v.size(), v.local_size(), _dof_map->get_send_list(),
1743  true, GHOSTED);
1744  v.localize (*local_v, _dof_map->get_send_list());
1745 
1746  // I'm not sure how best to mix Hilbert norms on some variables (for
1747  // which we'll want to square then sum then square root) with norms
1748  // like L_inf (for which we'll just want to take an absolute value
1749  // and then sum).
1750  bool using_hilbert_norm = true,
1751  using_nonhilbert_norm = true;
1752 
1753  // Loop over all variables
1754  for (auto var : make_range(this->n_vars()))
1755  {
1756  // Skip any variables we don't need to integrate
1757  Real norm_weight_sq = norm.weight_sq(var);
1758  if (norm_weight_sq == 0.0)
1759  continue;
1760  Real norm_weight = norm.weight(var);
1761 
1762  // Check for unimplemented norms (rather than just returning 0).
1763  FEMNormType norm_type = norm.type(var);
1764  if ((norm_type==H1) ||
1765  (norm_type==H2) ||
1766  (norm_type==L2) ||
1767  (norm_type==H1_SEMINORM) ||
1768  (norm_type==H2_SEMINORM))
1769  {
1770  if (!using_hilbert_norm)
1771  libmesh_not_implemented();
1772  using_nonhilbert_norm = false;
1773  }
1774  else if ((norm_type==L1) ||
1775  (norm_type==L_INF) ||
1776  (norm_type==W1_INF_SEMINORM) ||
1777  (norm_type==W2_INF_SEMINORM))
1778  {
1779  if (!using_nonhilbert_norm)
1780  libmesh_not_implemented();
1781  using_hilbert_norm = false;
1782  }
1783  else
1784  libmesh_not_implemented();
1785 
1786  const FEType & fe_type = this->get_dof_map().variable_type(var);
1787 
1788  // Allow space for dims 0-3, and for both scalar and vector
1789  // elements, even if we don't use them all
1790  std::vector<std::unique_ptr<FEBase>> fe_ptrs(4);
1791  std::vector<std::unique_ptr<FEVectorBase>> vec_fe_ptrs(4);
1792  std::vector<std::unique_ptr<QBase>> q_rules(4);
1793 
1794  const std::set<unsigned char> & elem_dims = _mesh.elem_dimensions();
1795 
1796  // Prepare finite elements for each dimension present in the mesh
1797  for (const auto & dim : elem_dims)
1798  {
1799  if (skip_dimensions && skip_dimensions->find(dim) != skip_dimensions->end())
1800  continue;
1801 
1802  // Construct quadrature and finite element objects
1803  q_rules[dim] = fe_type.default_quadrature_rule (dim);
1804 
1805  const FEFieldType field_type = FEInterface::field_type(fe_type);
1806  if (field_type == TYPE_SCALAR)
1807  {
1808  fe_ptrs[dim] = FEBase::build(dim, fe_type);
1809  fe_ptrs[dim]->attach_quadrature_rule (q_rules[dim].get());
1810  }
1811  else
1812  {
1813  vec_fe_ptrs[dim] = FEVectorBase::build(dim, fe_type);
1814  vec_fe_ptrs[dim]->attach_quadrature_rule (q_rules[dim].get());
1815  libmesh_assert_equal_to(field_type, TYPE_VECTOR);
1816  }
1817 
1818  }
1819 
1820  std::vector<dof_id_type> dof_indices;
1821 
1822  // Begin the loop over the elements
1823  for (const auto & elem : this->get_mesh().active_local_element_ptr_range())
1824  {
1825  const unsigned int dim = elem->dim();
1826 
1827  // One way for implementing this would be to exchange the fe with the FEInterface- class.
1828  // However, it needs to be discussed whether integral-norms make sense for infinite elements.
1829  // or in which sense they could make sense.
1830  if (elem->infinite() )
1831  libmesh_not_implemented();
1832 
1833  if (skip_dimensions && skip_dimensions->find(dim) != skip_dimensions->end())
1834  continue;
1835 
1836  QBase * qrule = q_rules[dim].get();
1837  libmesh_assert(qrule);
1838 
1839  this->get_dof_map().dof_indices (elem, dof_indices, var);
1840 
1841  auto element_calculation = [&dof_indices, &elem,
1842  norm_type, norm_weight, norm_weight_sq, &qrule,
1843  &local_v, &v_norm](auto & fe) {
1844  typedef typename std::remove_reference<decltype(fe)>::type::OutputShape OutputShape;
1845  typedef typename TensorTools::MakeNumber<OutputShape>::type OutputNumberShape;
1846  typedef typename std::remove_reference<decltype(fe)>::type::OutputGradient OutputGradient;
1847  typedef typename TensorTools::MakeNumber<OutputGradient>::type OutputNumberGradient;
1848 
1849  const std::vector<Real> & JxW = fe.get_JxW();
1850  const std::vector<std::vector<OutputShape>> * phi = nullptr;
1851  if (norm_type == H1 ||
1852  norm_type == H2 ||
1853  norm_type == L2 ||
1854  norm_type == L1 ||
1855  norm_type == L_INF)
1856  phi = &(fe.get_phi());
1857 
1858  const std::vector<std::vector<OutputGradient>> * dphi = nullptr;
1859  if (norm_type == H1 ||
1860  norm_type == H2 ||
1861  norm_type == H1_SEMINORM ||
1862  norm_type == W1_INF_SEMINORM)
1863  dphi = &(fe.get_dphi());
1864 
1865 #ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
1866  typedef typename std::remove_reference<decltype(fe)>::type::OutputTensor OutputTensor;
1867 
1868  const std::vector<std::vector<OutputTensor>> * d2phi = nullptr;
1869  if (norm_type == H2 ||
1870  norm_type == H2_SEMINORM ||
1871  norm_type == W2_INF_SEMINORM)
1872  d2phi = &(fe.get_d2phi());
1873 #endif
1874 
1875  fe.reinit (elem);
1876 
1877  const unsigned int n_qp = qrule->n_points();
1878 
1879  const unsigned int n_sf = cast_int<unsigned int>
1880  (dof_indices.size());
1881 
1882  // Begin the loop over the Quadrature points.
1883  for (unsigned int qp=0; qp<n_qp; qp++)
1884  {
1885  if (norm_type == L1)
1886  {
1887  OutputNumberShape u_h = 0.;
1888  for (unsigned int i=0; i != n_sf; ++i)
1889  u_h += (*phi)[i][qp] * (*local_v)(dof_indices[i]);
1890  v_norm += norm_weight *
1891  JxW[qp] * TensorTools::norm(u_h);
1892  }
1893 
1894  if (norm_type == L_INF)
1895  {
1896  OutputNumberShape u_h = 0.;
1897  for (unsigned int i=0; i != n_sf; ++i)
1898  u_h += (*phi)[i][qp] * (*local_v)(dof_indices[i]);
1899  v_norm = std::max(v_norm, norm_weight * TensorTools::norm(u_h));
1900  }
1901 
1902  if (norm_type == H1 ||
1903  norm_type == H2 ||
1904  norm_type == L2)
1905  {
1906  OutputNumberShape u_h = 0.;
1907  for (unsigned int i=0; i != n_sf; ++i)
1908  u_h += (*phi)[i][qp] * (*local_v)(dof_indices[i]);
1909  v_norm += norm_weight_sq *
1910  JxW[qp] * TensorTools::norm_sq(u_h);
1911  }
1912 
1913  if (norm_type == H1 ||
1914  norm_type == H2 ||
1915  norm_type == H1_SEMINORM)
1916  {
1917  OutputNumberGradient grad_u_h;
1918  for (unsigned int i=0; i != n_sf; ++i)
1919  grad_u_h.add_scaled((*dphi)[i][qp], (*local_v)(dof_indices[i]));
1920  v_norm += norm_weight_sq *
1921  JxW[qp] * grad_u_h.norm_sq();
1922  }
1923 
1924  if (norm_type == W1_INF_SEMINORM)
1925  {
1926  OutputNumberGradient grad_u_h;
1927  for (unsigned int i=0; i != n_sf; ++i)
1928  grad_u_h.add_scaled((*dphi)[i][qp], (*local_v)(dof_indices[i]));
1929  v_norm = std::max(v_norm, norm_weight * grad_u_h.norm());
1930  }
1931 
1932 #ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
1933  typedef typename TensorTools::MakeNumber<OutputTensor>::type OutputNumberTensor;
1934 
1935  if (norm_type == H2 ||
1936  norm_type == H2_SEMINORM)
1937  {
1938  OutputNumberTensor hess_u_h;
1939  for (unsigned int i=0; i != n_sf; ++i)
1940  hess_u_h.add_scaled((*d2phi)[i][qp], (*local_v)(dof_indices[i]));
1941  v_norm += norm_weight_sq *
1942  JxW[qp] * hess_u_h.norm_sq();
1943  }
1944 
1945  if (norm_type == W2_INF_SEMINORM)
1946  {
1947  OutputNumberTensor hess_u_h;
1948  for (unsigned int i=0; i != n_sf; ++i)
1949  hess_u_h.add_scaled((*d2phi)[i][qp], (*local_v)(dof_indices[i]));
1950  v_norm = std::max(v_norm, norm_weight * hess_u_h.norm());
1951  }
1952 #endif
1953  }
1954  };
1955 
1956  FEBase * scalar_fe = fe_ptrs[dim].get();
1957  FEVectorBase * vec_fe = vec_fe_ptrs[dim].get();
1958 
1959  if (scalar_fe)
1960  {
1961  libmesh_assert(!vec_fe);
1962  element_calculation(*scalar_fe);
1963  }
1964 
1965  if (vec_fe)
1966  {
1967  libmesh_assert(!scalar_fe);
1968  element_calculation(*vec_fe);
1969  }
1970  }
1971  }
1972 
1973  if (using_hilbert_norm)
1974  {
1975  this->comm().sum(v_norm);
1976  v_norm = std::sqrt(v_norm);
1977  }
1978  else
1979  {
1980  this->comm().max(v_norm);
1981  }
1982 
1983  return v_norm;
1984 }
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
Fills the vector di with the global degree of freedom indices for the element.
Definition: dof_map.C:1992
unsigned int dim
virtual numeric_index_type size() const =0
const FEType & variable_type(const unsigned int c) const
Definition: dof_map.h:2144
void sum(T &r) const
static FEFieldType field_type(const FEType &fe_type)
FEMNormType
defines an enum for norms defined on vectors of finite element coefficients
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
const Parallel::Communicator & comm() const
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:53
FEGenericBase< RealGradient > FEVectorBase
Definition: fe_base.h:818
const MeshBase & get_mesh() const
Definition: system.h:2277
virtual Real l2_norm() const =0
static std::unique_ptr< FEGenericBase > build(const unsigned int dim, const FEType &type)
Builds a specific finite element type.
libmesh_assert(ctx)
const std::set< unsigned char > & elem_dimensions() const
Definition: mesh_base.h:276
auto norm(const T &a) -> decltype(std::abs(a))
Definition: tensor_tools.h:74
FEGenericBase< Real > FEBase
virtual Real l1_norm() const =0
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
std::string enum_to_string(const T e)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void max(const T &r, T &o, Request &req) const
auto norm_sq(const T &a) -> decltype(std::norm(a))
Definition: tensor_tools.h:104
virtual numeric_index_type local_size() const =0
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
Real discrete_var_norm(const NumericVector< Number > &v, unsigned int var, FEMNormType norm_type) const
Finds the discrete norm for the entries in the vector corresponding to Dofs associated with var...
Definition: system.C:1653
unsigned int n_vars() const
Definition: system.h:2349
const DofMap & get_dof_map() const
Definition: system.h:2293
MeshBase & _mesh
Constant reference to the mesh data structure used for the simulation.
Definition: system.h:2125
virtual Real linfty_norm() const =0
virtual void localize(std::vector< T > &v_local) const =0
Creates a copy of the global vector in the local vector v_local.
FEFieldType
defines an enum for finite element field types - i.e.

◆ can_add_matrices()

bool libMesh::System::can_add_matrices ( ) const
inlineprotectedinherited
Returns
Whether or not matrices can still be added without expensive per-matrix initialization.

Definition at line 1914 of file system.h.

References libMesh::System::_matrices_initialized.

Referenced by libMesh::EigenSystem::set_eigenproblem_type().

1914 { return !_matrices_initialized; }
bool _matrices_initialized
false when additional matrices being added require initialization, true otherwise.
Definition: system.h:2191

◆ clear()

void libMesh::RBSCMConstruction::clear ( )
overridevirtual

Clear all the data structures associated with the system.

Reimplemented from libMesh::RBConstructionBase< CondensedEigenSystem >.

Definition at line 67 of file rb_scm_construction.C.

References libMesh::RBConstructionBase< CondensedEigenSystem >::clear().

68 {
69  Parent::clear();
70 }
virtual void clear()
Clear all the data structures associated with the system.

◆ comm()

const Parallel::Communicator& libMesh::ParallelObject::comm ( ) const
inlineinherited
Returns
A reference to the Parallel::Communicator object used by this mesh.

Definition at line 97 of file parallel_object.h.

References libMesh::ParallelObject::_communicator.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_monitor(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::__libmesh_tao_equality_constraints(), libMesh::__libmesh_tao_equality_constraints_jacobian(), libMesh::__libmesh_tao_gradient(), libMesh::__libmesh_tao_hessian(), libMesh::__libmesh_tao_inequality_constraints(), libMesh::__libmesh_tao_inequality_constraints_jacobian(), libMesh::__libmesh_tao_objective(), libMesh::MeshRefinement::_coarsen_elements(), libMesh::ExactSolution::_compute_error(), libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::Partitioner::_find_global_index_by_pid_map(), libMesh::BoundaryInfo::_find_id_maps(), libMesh::SlepcEigenSolver< libMesh::Number >::_petsc_shell_matrix_get_diagonal(), libMesh::PetscLinearSolver< Number >::_petsc_shell_matrix_get_diagonal(), libMesh::SlepcEigenSolver< libMesh::Number >::_petsc_shell_matrix_mult(), libMesh::PetscLinearSolver< Number >::_petsc_shell_matrix_mult(), libMesh::PetscLinearSolver< Number >::_petsc_shell_matrix_mult_add(), libMesh::MeshRefinement::_refine_elements(), libMesh::MeshRefinement::_smooth_flags(), libMesh::DofMap::add_constraints_to_send_list(), add_cube_convex_hull_to_mesh(), libMesh::PetscDMWrapper::add_dofs_helper(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::TransientRBConstruction::add_IC_to_RB_space(), libMesh::EigenSystem::add_matrices(), libMesh::System::add_matrix(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::System::add_variable(), libMesh::System::add_variables(), libMesh::System::add_vector(), libMesh::MeshTools::Modification::all_tri(), libMesh::LaplaceMeshSmoother::allgather_graph(), libMesh::DofMap::allgather_recursive_constraints(), libMesh::TransientRBConstruction::allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), libMesh::TransientRBConstruction::assemble_affine_expansion(), libMesh::FEMSystem::assemble_qoi(), libMesh::Nemesis_IO::assert_symmetric_cmaps(), libMesh::MeshCommunication::assign_global_indices(), libMesh::Partitioner::assign_partitioning(), libMesh::MeshTools::Generation::build_extrusion(), libMesh::BoundaryInfo::build_node_list_from_side_list(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::PetscDMWrapper::build_section(), libMesh::PetscDMWrapper::build_sf(), libMesh::MeshBase::cache_elem_data(), libMesh::System::calculate_norm(), libMesh::DofMap::check_dirichlet_bcid_consistency(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::Nemesis_IO_Helper::compute_num_global_elem_blocks(), libMesh::Nemesis_IO_Helper::compute_num_global_nodesets(), libMesh::Nemesis_IO_Helper::compute_num_global_sidesets(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), compute_SCM_bounds_on_training_set(), libMesh::DofMap::computed_sparsity_already(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::ContinuationSystem::ContinuationSystem(), libMesh::MeshBase::copy_constraint_rows(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::MeshTools::correct_node_proc_ids(), libMesh::MeshTools::create_bounding_box(), libMesh::DofMap::create_dof_constraints(), libMesh::MeshTools::create_nodal_bounding_box(), libMesh::MeshRefinement::create_parent_error_vector(), libMesh::MeshTools::create_processor_bounding_box(), libMesh::MeshTools::create_subdomain_bounding_box(), libMesh::PetscMatrix< libMesh::Number >::create_submatrix_nosort(), libMesh::MeshCommunication::delete_remote_elements(), libMesh::RBEIMEvaluation::distribute_bfs(), libMesh::DofMap::distribute_dofs(), DMlibMeshFunction(), DMlibMeshJacobian(), DMlibMeshSetSystem_libMesh(), DMVariableBounds_libMesh(), libMesh::DTKSolutionTransfer::DTKSolutionTransfer(), libMesh::MeshRefinement::eliminate_unrefined_patches(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_interiors(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_nodes(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_sides(), libMesh::TransientRBConstruction::enrich_RB_space(), libMesh::EpetraVector< T >::EpetraVector(), AssembleOptimization::equality_constraints(), libMesh::PatchRecoveryErrorEstimator::estimate_error(), libMesh::WeightedPatchRecoveryErrorEstimator::estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::MeshRefinement::flag_elements_by_elem_fraction(), libMesh::MeshRefinement::flag_elements_by_error_fraction(), libMesh::MeshRefinement::flag_elements_by_error_tolerance(), libMesh::MeshRefinement::flag_elements_by_mean_stddev(), libMesh::MeshRefinement::flag_elements_by_nelem_target(), libMesh::RBEIMEvaluation::gather_bfs(), libMesh::DofMap::gather_constraints(), libMesh::MeshfreeInterpolation::gather_remote_data(), libMesh::CondensedEigenSystem::get_eigenpair(), libMesh::RBEIMEvaluation::get_eim_basis_function_node_value(), libMesh::RBEIMEvaluation::get_eim_basis_function_side_value(), libMesh::RBEIMEvaluation::get_eim_basis_function_value(), libMesh::MeshBase::get_info(), libMesh::System::get_info(), libMesh::DofMap::get_info(), libMesh::ImplicitSystem::get_linear_solver(), libMesh::RBEIMConstruction::get_max_abs_value(), libMesh::RBEIMConstruction::get_node_max_abs_value(), libMesh::RBEIMEvaluation::get_parametrized_function_node_value(), libMesh::RBEIMEvaluation::get_parametrized_function_side_value(), libMesh::RBEIMEvaluation::get_parametrized_function_value(), libMesh::RBEIMConstruction::get_random_point(), AssembleOptimization::inequality_constraints(), AssembleOptimization::inequality_constraints_jacobian(), libMesh::LocationMap< T >::init(), libMesh::TimeSolver::init(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), libMesh::RBEIMConstruction::initialize_parametrized_functions_in_training_set(), libMesh::RBEIMConstruction::inner_product(), integrate_function(), libMesh::MeshTools::libmesh_assert_consistent_distributed(), libMesh::MeshTools::libmesh_assert_consistent_distributed_nodes(), libMesh::MeshTools::libmesh_assert_contiguous_dof_ids(), libMesh::MeshTools::libmesh_assert_equal_connectivity(), libMesh::MeshTools::libmesh_assert_equal_points(), libMesh::MeshTools::libmesh_assert_parallel_consistent_new_node_procids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_topology_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), libMesh::MeshTools::libmesh_assert_valid_dof_ids(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_flags(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_object_ids(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_p_levels(), libMesh::MeshTools::libmesh_assert_valid_refinement_flags(), libMesh::MeshTools::libmesh_assert_valid_unique_ids(), libMesh::libmesh_petsc_linesearch_shellfunc(), libMesh::libmesh_petsc_preconditioner_apply(), libMesh::libmesh_petsc_recalculate_monitor(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_interface(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_postcheck(), libMesh::libmesh_petsc_snes_precheck(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::MeshRefinement::limit_level_mismatch_at_edge(), libMesh::MeshRefinement::limit_level_mismatch_at_node(), libMesh::MeshRefinement::limit_overrefined_boundary(), libMesh::MeshRefinement::limit_underrefined_boundary(), libMesh::LinearImplicitSystem::LinearImplicitSystem(), main(), libMesh::MeshRefinement::make_coarsening_compatible(), libMesh::MeshCommunication::make_elems_parallel_consistent(), libMesh::MeshRefinement::make_flags_parallel_consistent(), libMesh::MeshCommunication::make_new_node_proc_ids_parallel_consistent(), libMesh::MeshCommunication::make_new_nodes_parallel_consistent(), libMesh::MeshCommunication::make_node_bcids_parallel_consistent(), libMesh::MeshCommunication::make_node_ids_parallel_consistent(), libMesh::MeshCommunication::make_node_proc_ids_parallel_consistent(), libMesh::MeshCommunication::make_node_unique_ids_parallel_consistent(), libMesh::MeshCommunication::make_nodes_parallel_consistent(), libMesh::MeshCommunication::make_p_levels_parallel_consistent(), libMesh::MeshRefinement::make_refinement_compatible(), libMesh::TransientRBConstruction::mass_matrix_scaled_matvec(), libMesh::FEMSystem::mesh_position_set(), libMesh::TriangulatorInterface::MeshedHole::MeshedHole(), LinearElasticityWithContact::move_mesh(), libMesh::DistributedMesh::n_active_elem(), libMesh::MeshTools::n_active_levels(), libMesh::BoundaryInfo::n_boundary_conds(), libMesh::DofMap::n_constrained_dofs(), libMesh::BoundaryInfo::n_edge_conds(), libMesh::CondensedEigenSystem::n_global_non_condensed_dofs(), libMesh::MeshTools::n_levels(), MixedOrderTest::n_neighbor_links(), libMesh::BoundaryInfo::n_nodeset_conds(), libMesh::SparsityPattern::Build::n_nonzeros(), libMesh::MeshTools::n_p_levels(), libMesh::BoundaryInfo::n_shellface_conds(), libMesh::RBEIMEvaluation::node_distribute_bfs(), libMesh::RBEIMEvaluation::node_gather_bfs(), libMesh::RBEIMConstruction::node_inner_product(), libMesh::MeshBase::operator==(), libMesh::DistributedMesh::parallel_max_elem_id(), libMesh::DistributedMesh::parallel_max_node_id(), libMesh::ReplicatedMesh::parallel_max_unique_id(), libMesh::DistributedMesh::parallel_max_unique_id(), libMesh::DistributedMesh::parallel_n_elem(), libMesh::DistributedMesh::parallel_n_nodes(), libMesh::SparsityPattern::Build::parallel_sync(), libMesh::BoundaryInfo::parallel_sync_node_ids(), libMesh::BoundaryInfo::parallel_sync_side_ids(), libMesh::MeshTools::paranoid_n_levels(), libMesh::Partitioner::partition(), libMesh::Partitioner::partition_unpartitioned_elements(), libMesh::petsc_auto_fieldsplit(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::MeshBase::prepare_for_use(), libMesh::DofMap::print_dof_constraints(), libMesh::DofMap::process_mesh_constraint_rows(), libMesh::Partitioner::processor_pairs_to_interface_nodes(), libMesh::InterMeshProjection::project_system_vectors(), FEMParameters::read(), libMesh::Nemesis_IO::read(), libMesh::XdrIO::read(), libMesh::EquationSystems::read(), libMesh::ExodusII_IO::read_header(), libMesh::CheckpointIO::read_header(), libMesh::XdrIO::read_header(), libMesh::System::read_header(), libMesh::RBEIMEvaluation::read_in_interior_basis_functions(), libMesh::RBEIMEvaluation::read_in_node_basis_functions(), libMesh::RBEIMEvaluation::read_in_side_basis_functions(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), libMesh::System::read_legacy_data(), libMesh::TransientRBConstruction::read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::System::read_SCALAR_dofs(), libMesh::XdrIO::read_serialized_bc_names(), libMesh::XdrIO::read_serialized_bcs_helper(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::XdrIO::read_serialized_connectivity(), libMesh::XdrIO::read_serialized_nodes(), libMesh::XdrIO::read_serialized_nodesets(), libMesh::XdrIO::read_serialized_subdomain_names(), libMesh::System::read_serialized_vector(), libMesh::Nemesis_IO_Helper::read_var_names_impl(), libMesh::MeshBase::recalculate_n_partitions(), libMesh::MeshRefinement::refine_and_coarsen_elements(), libMesh::DistributedMesh::renumber_dof_objects(), libMesh::DistributedMesh::renumber_nodes_and_elements(), LinearElasticityWithContact::residual_and_jacobian(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), scale_mesh_and_plot(), libMesh::DofMap::scatter_constraints(), libMesh::CheckpointIO::select_split_config(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::send_and_insert_dof_values(), libMesh::TransientRBConstruction::set_error_temporal_data(), libMesh::Partitioner::set_interface_node_processor_ids_BFS(), libMesh::Partitioner::set_interface_node_processor_ids_linear(), libMesh::Partitioner::set_interface_node_processor_ids_petscpartitioner(), libMesh::Partitioner::set_node_processor_ids(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::Partitioner::set_parent_processor_ids(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::PetscDiffSolver::setup_petsc_data(), libMesh::RBEIMEvaluation::side_distribute_bfs(), libMesh::RBEIMEvaluation::side_gather_bfs(), libMesh::RBEIMConstruction::side_inner_product(), libMesh::Partitioner::single_partition(), libMesh::LaplaceMeshSmoother::smooth(), libMesh::split_mesh(), libMesh::RBEIMConstruction::store_eim_solutions_for_training_set(), libMesh::MeshBase::subdomain_ids(), libMesh::BoundaryInfo::sync(), ConstraintOperatorTest::test1DCoarseningNewNodes(), ConstraintOperatorTest::test1DCoarseningOperator(), libMesh::MeshRefinement::test_level_one(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), libMesh::MeshRefinement::test_unflagged(), DofMapTest::testBadElemFECombo(), SystemsTest::testBlockRestrictedVarNDofs(), BoundaryInfoTest::testBoundaryOnChildrenErrors(), MeshInputTest::testExodusIGASidesets(), MeshTriangulationTest::testFoundCenters(), PointLocatorTest::testLocator(), BoundaryInfoTest::testMesh(), PointLocatorTest::testPlanar(), MeshTriangulationTest::testPoly2TriRefinementBase(), SystemsTest::testProjectCubeWithMeshFunction(), BoundaryInfoTest::testRenumber(), CheckpointIOTest::testSplitter(), MeshInputTest::testTetgenIO(), MeshTriangulationTest::testTriangulatorInterp(), MeshTriangulationTest::testTriangulatorMeshedHoles(), libMesh::MeshTools::total_weight(), libMesh::RBConstruction::train_reduced_basis_with_POD(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::MeshfreeSolutionTransfer::transfer(), libMesh::Poly2TriTriangulator::triangulate(), libMesh::TransientRBConstruction::truth_assembly(), libMesh::RBConstruction::truth_assembly(), libMesh::MeshRefinement::uniformly_coarsen(), libMesh::TransientRBConstruction::update_RB_initial_condition_all_N(), libMesh::TransientRBConstruction::update_RB_system_matrices(), libMesh::RBConstruction::update_RB_system_matrices(), libMesh::TransientRBConstruction::update_residual_terms(), libMesh::RBConstruction::update_residual_terms(), libMesh::NameBasedIO::write(), libMesh::XdrIO::write(), libMesh::VTKIO::write_nodal_data(), libMesh::RBEIMEvaluation::write_out_interior_basis_functions(), libMesh::RBEIMEvaluation::write_out_node_basis_functions(), libMesh::RBEIMEvaluation::write_out_side_basis_functions(), libMesh::RBEvaluation::write_out_vectors(), libMesh::TransientRBConstruction::write_riesz_representors_to_files(), libMesh::RBConstruction::write_riesz_representors_to_files(), libMesh::System::write_SCALAR_dofs(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::XdrIO::write_serialized_nodes(), libMesh::XdrIO::write_serialized_nodesets(), libMesh::RBDataSerialization::RBEvaluationSerialization::write_to_file(), libMesh::RBDataSerialization::TransientRBEvaluationSerialization::write_to_file(), libMesh::RBDataSerialization::RBEIMEvaluationSerialization::write_to_file(), and libMesh::RBDataSerialization::RBSCMEvaluationSerialization::write_to_file().

98  { return _communicator; }
const Parallel::Communicator & _communicator

◆ compare()

bool libMesh::System::compare ( const System other_system,
const Real  threshold,
const bool  verbose 
) const
virtualinherited
Returns
true when the other system contains identical data, up to the given threshold. Outputs some diagnostic info when verbose is set.

Definition at line 601 of file system.C.

References libMesh::System::_is_initialized, libMesh::System::_sys_name, libMesh::System::_vectors, libMesh::System::get_vector(), libMesh::libmesh_assert(), libMesh::System::n_vectors(), libMesh::System::name(), libMesh::out, and libMesh::System::solution.

604 {
605  // we do not care for matrices, but for vectors
607  libmesh_assert (other_system._is_initialized);
608 
609  if (verbose)
610  {
611  libMesh::out << " Systems \"" << _sys_name << "\"" << std::endl;
612  libMesh::out << " comparing matrices not supported." << std::endl;
613  libMesh::out << " comparing names...";
614  }
615 
616  // compare the name: 0 means identical
617  const int name_result = _sys_name.compare(other_system.name());
618  if (verbose)
619  {
620  if (name_result == 0)
621  libMesh::out << " identical." << std::endl;
622  else
623  libMesh::out << " names not identical." << std::endl;
624  libMesh::out << " comparing solution vector...";
625  }
626 
627 
628  // compare the solution: -1 means identical
629  const int solu_result = solution->compare (*other_system.solution.get(),
630  threshold);
631 
632  if (verbose)
633  {
634  if (solu_result == -1)
635  libMesh::out << " identical up to threshold." << std::endl;
636  else
637  libMesh::out << " first difference occurred at index = "
638  << solu_result << "." << std::endl;
639  }
640 
641 
642  // safety check, whether we handle at least the same number
643  // of vectors
644  std::vector<int> ov_result;
645 
646  if (this->n_vectors() != other_system.n_vectors())
647  {
648  if (verbose)
649  {
650  libMesh::out << " Fatal difference. This system handles "
651  << this->n_vectors() << " add'l vectors," << std::endl
652  << " while the other system handles "
653  << other_system.n_vectors()
654  << " add'l vectors." << std::endl
655  << " Aborting comparison." << std::endl;
656  }
657  return false;
658  }
659  else if (this->n_vectors() == 0)
660  {
661  // there are no additional vectors...
662  ov_result.clear ();
663  }
664  else
665  {
666  // compare other vectors
667  for (auto & [vec_name, vec] : _vectors)
668  {
669  if (verbose)
670  libMesh::out << " comparing vector \""
671  << vec_name << "\" ...";
672 
673  // assume they have the same name
674  const NumericVector<Number> & other_system_vector =
675  other_system.get_vector(vec_name);
676 
677  ov_result.push_back(vec->compare(other_system_vector, threshold));
678 
679  if (verbose)
680  {
681  if (ov_result[ov_result.size()-1] == -1)
682  libMesh::out << " identical up to threshold." << std::endl;
683  else
684  libMesh::out << " first difference occurred at" << std::endl
685  << " index = " << ov_result[ov_result.size()-1] << "." << std::endl;
686  }
687  }
688  } // finished comparing additional vectors
689 
690 
691  bool overall_result;
692 
693  // sum up the results
694  if ((name_result==0) && (solu_result==-1))
695  {
696  if (ov_result.size()==0)
697  overall_result = true;
698  else
699  {
700  bool ov_identical;
701  unsigned int n = 0;
702  do
703  {
704  ov_identical = (ov_result[n]==-1);
705  n++;
706  }
707  while (ov_identical && n<ov_result.size());
708  overall_result = ov_identical;
709  }
710  }
711  else
712  overall_result = false;
713 
714  if (verbose)
715  {
716  libMesh::out << " finished comparisons, ";
717  if (overall_result)
718  libMesh::out << "found no differences." << std::endl << std::endl;
719  else
720  libMesh::out << "found differences." << std::endl << std::endl;
721  }
722 
723  return overall_result;
724 }
bool _is_initialized
true when additional vectors and variables do not require immediate initialization, false otherwise.
Definition: system.h:2210
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
unsigned int n_vectors() const
Definition: system.h:2477
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
OStreamProxy out
const std::string _sys_name
A name associated with this system.
Definition: system.h:2130
template class LIBMESH_EXPORT NumericVector< Number >

◆ compute_SCM_bounding_box()

void libMesh::RBSCMConstruction::compute_SCM_bounding_box ( )
protectedvirtual

Compute the SCM bounding box.

Definition at line 287 of file rb_scm_construction.C.

References add_scaled_symm_Aq(), libMesh::RBSCMEvaluation::B_max, libMesh::RBSCMEvaluation::B_min, libMesh::EigenSystem::eigen_solver, libMesh::RBSCMEvaluation::get_B_max(), libMesh::RBSCMEvaluation::get_B_min(), libMesh::CondensedEigenSystem::get_eigenpair(), libMesh::RBThetaExpansion::get_n_A_terms(), libMesh::EigenSystem::get_n_converged(), get_rb_theta_expansion(), libMesh::LARGEST_REAL, libMesh::EigenSystem::matrix_A, libMesh::out, rb_scm_eval, libMesh::RBSCMEvaluation::set_B_max(), libMesh::RBSCMEvaluation::set_B_min(), set_eigensolver_properties(), libMesh::SMALLEST_REAL, libMesh::CondensedEigenSystem::solve(), libMesh::TOLERANCE, and libMesh::SparseMatrix< T >::zero().

Referenced by perform_SCM_greedy().

288 {
289  LOG_SCOPE("compute_SCM_bounding_box()", "RBSCMConstruction");
290 
291  // Resize the bounding box vectors
292  rb_scm_eval->B_min.resize(get_rb_theta_expansion().get_n_A_terms());
293  rb_scm_eval->B_max.resize(get_rb_theta_expansion().get_n_A_terms());
294 
295  for (unsigned int q=0; q<get_rb_theta_expansion().get_n_A_terms(); q++)
296  {
297  matrix_A->zero();
298  add_scaled_symm_Aq(q, 1.);
299 
300  // Compute B_min(q)
301  eigen_solver->set_position_of_spectrum(SMALLEST_REAL);
303 
304  solve();
305  // TODO: Assert convergence for eigensolver
306 
307  unsigned int nconv = get_n_converged();
308  if (nconv != 0)
309  {
310  std::pair<Real, Real> eval = get_eigenpair(0);
311 
312  // ensure that the eigenvalue is real
313  libmesh_assert_less (eval.second, TOLERANCE);
314 
315  rb_scm_eval->set_B_min(q, eval.first);
316  libMesh::out << std::endl << "B_min("<<q<<") = " << rb_scm_eval->get_B_min(q) << std::endl;
317  }
318  else
319  libmesh_error_msg("Eigen solver for computing B_min did not converge");
320 
321  // Compute B_max(q)
322  eigen_solver->set_position_of_spectrum(LARGEST_REAL);
324 
325  solve();
326  // TODO: Assert convergence for eigensolver
327 
328  nconv = get_n_converged();
329  if (nconv != 0)
330  {
331  std::pair<Real, Real> eval = get_eigenpair(0);
332 
333  // ensure that the eigenvalue is real
334  libmesh_assert_less (eval.second, TOLERANCE);
335 
336  rb_scm_eval->set_B_max(q,eval.first);
337  libMesh::out << "B_max("<<q<<") = " << rb_scm_eval->get_B_max(q) << std::endl;
338  }
339  else
340  libmesh_error_msg("Eigen solver for computing B_max did not converge");
341  }
342 }
std::vector< Real > B_min
B_min, B_max define the bounding box.
static constexpr Real TOLERANCE
Real get_B_min(unsigned int i) const
Get B_min and B_max.
unsigned int get_n_A_terms() const
Get Q_a, the number of terms in the affine expansion for the bilinear form.
std::vector< Real > B_max
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...
virtual void solve() override
Override to solve the condensed eigenproblem with the dofs in local_non_condensed_dofs_vector strippe...
virtual void zero()=0
Set all entries to 0.
void set_B_min(unsigned int i, Real B_min_val)
Set B_min and B_max.
SparseMatrix< Number > * matrix_A
The system matrix for standard eigenvalue problems.
Definition: eigen_system.h:313
virtual void set_eigensolver_properties(int)
This function is called before truth eigensolves in compute_SCM_bounding_box and evaluate_stability_c...
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object.
void set_B_max(unsigned int i, Real B_max_val)
virtual void add_scaled_symm_Aq(unsigned int q_a, Number scalar)
Add the scaled symmetrized affine matrix from the associated RBSystem to matrix_A.
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver, defining which interface, i.e solver package to use.
Definition: eigen_system.h:362
OStreamProxy out
virtual std::pair< Real, Real > get_eigenpair(dof_id_type i) override
Override get_eigenpair() to retrieve the eigenpair for the condensed eigensolve.
Real get_B_max(unsigned int i) const
unsigned int get_n_converged() const
Definition: eigen_system.h:130

◆ compute_SCM_bounds_on_training_set()

std::pair< unsigned int, Real > libMesh::RBSCMConstruction::compute_SCM_bounds_on_training_set ( )
protectedvirtual

Compute upper and lower bounds for each SCM training point.

Return a pair containing the maximum SCM error, and the index of the parameter in the training set at which the max error is achieved.

Definition at line 419 of file rb_scm_construction.C.

References libMesh::ParallelObject::comm(), libMesh::RBConstructionBase< CondensedEigenSystem >::get_first_local_training_index(), libMesh::RBConstructionBase< CondensedEigenSystem >::get_global_max_error_pair(), libMesh::RBConstructionBase< CondensedEigenSystem >::get_local_n_training_samples(), libMesh::RBParametrized::get_parameters(), libMesh::RBSCMEvaluation::get_SCM_LB(), libMesh::RBSCMEvaluation::get_SCM_UB(), rb_scm_eval, libMesh::Real, SCM_greedy_error_indicator(), libMesh::RBParametrized::set_parameters(), and libMesh::RBConstructionBase< CondensedEigenSystem >::set_params_from_training_set().

Referenced by perform_SCM_greedy().

420 {
421  LOG_SCOPE("compute_SCM_bounds_on_training_set()", "RBSCMConstruction");
422 
423  // Now compute the maximum bound error over training_parameters
424  unsigned int new_C_J_index = 0;
425  Real max_SCM_error = 0.;
426 
428  for (unsigned int i=0; i<get_local_n_training_samples(); i++)
429  {
430  set_params_from_training_set(first_index+i);
432  Real LB = rb_scm_eval->get_SCM_LB();
433  Real UB = rb_scm_eval->get_SCM_UB();
434 
435  Real error_i = SCM_greedy_error_indicator(LB, UB);
436 
437  if (error_i > max_SCM_error)
438  {
439  max_SCM_error = error_i;
440  new_C_J_index = i;
441  }
442  }
443 
444  numeric_index_type global_index = first_index + new_C_J_index;
445  std::pair<numeric_index_type,Real> error_pair(global_index, max_SCM_error);
446  get_global_max_error_pair(this->comm(),error_pair);
447 
448  return error_pair;
449 }
numeric_index_type get_first_local_training_index() const
Get the first local index of the training parameters.
virtual Real get_SCM_UB()
Evaluate single SCM upper bound.
const Parallel::Communicator & comm() const
static void get_global_max_error_pair(const Parallel::Communicator &communicator, std::pair< numeric_index_type, Real > &error_pair)
Static function to return the error pair (index,error) that is corresponds to the largest error on al...
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...
virtual Real get_SCM_LB()
Evaluate single SCM lower bound.
dof_id_type numeric_index_type
Definition: id_types.h:99
virtual Real SCM_greedy_error_indicator(Real LB, Real UB)
Helper function which provides an error indicator to be used in the SCM greedy.
numeric_index_type get_local_n_training_samples() const
Get the total number of training samples local to this processor.
const RBParameters & get_parameters() const
Get the current parameters.
void set_params_from_training_set(unsigned int global_index)
Set parameters to the RBParameters stored in index global_index of the global training set...
bool set_parameters(const RBParameters &params)
Set the current parameters to params The parameters are checked for validity; an error is thrown if t...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ current_solution()

Number libMesh::System::current_solution ( const dof_id_type  global_dof_number) const
inherited
Returns
The current solution for the specified global DOF.

Definition at line 157 of file system.C.

References libMesh::System::_dof_map, and libMesh::System::current_local_solution.

Referenced by libMesh::ExactSolution::_compute_error(), libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::HPCoarsenTest::add_projection(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::ExactErrorEstimator::estimate_error(), main(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::HPCoarsenTest::select_refinement(), SolidSystem::side_time_derivative(), libMesh::EnsightIO::write_scalar_ascii(), and libMesh::EnsightIO::write_vector_ascii().

158 {
159  // Check the sizes
160  libmesh_assert_less (global_dof_number, _dof_map->n_dofs());
161  libmesh_assert_less (global_dof_number, current_local_solution->size());
162 
163  return (*current_local_solution)(global_dof_number);
164 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585

◆ deactivate()

void libMesh::System::deactivate ( )
inlineinherited

Deactivates the system.

Only active systems are solved.

Definition at line 2325 of file system.h.

References libMesh::System::_active.

2326 {
2327  _active = false;
2328 }
bool _active
Flag stating if the system is active or not.
Definition: system.h:2156

◆ disable_cache()

void libMesh::System::disable_cache ( )
inlinevirtualinherited

Avoids use of any cached data that might affect any solve result.

Should be overridden in derived systems.

Reimplemented in libMesh::ImplicitSystem.

Definition at line 2513 of file system.h.

References libMesh::System::assemble_before_solve.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error().

2513 { assemble_before_solve = true; }
bool assemble_before_solve
Flag which tells the system to whether or not to call the user assembly function during each call to ...
Definition: system.h:1527

◆ disable_print_counter_info() [1/2]

void libMesh::ReferenceCounter::disable_print_counter_info ( )
staticinherited

Definition at line 100 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

101 {
102  _enable_print_counter = false;
103  return;
104 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ disable_print_counter_info() [2/2]

void libMesh::ReferenceCounter::disable_print_counter_info ( )
staticinherited

Definition at line 100 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

101 {
102  _enable_print_counter = false;
103  return;
104 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ enable_print_counter_info() [1/2]

void libMesh::ReferenceCounter::enable_print_counter_info ( )
staticinherited

Methods to enable/disable the reference counter output from print_info()

Definition at line 94 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

95 {
96  _enable_print_counter = true;
97  return;
98 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ enable_print_counter_info() [2/2]

void libMesh::ReferenceCounter::enable_print_counter_info ( )
staticinherited

Methods to enable/disable the reference counter output from print_info()

Definition at line 94 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

95 {
96  _enable_print_counter = true;
97  return;
98 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ enrich_C_J()

void libMesh::RBSCMConstruction::enrich_C_J ( unsigned int  new_C_J_index)
protectedvirtual

Enrich C_J by adding the element of SCM_training_samples that has the largest gap between alpha_LB and alpha_LB.

Definition at line 451 of file rb_scm_construction.C.

References libMesh::RBSCMEvaluation::C_J, libMesh::RBSCMEvaluation::C_J_stability_vector, libMesh::RBParametrized::get_parameters(), get_rb_theta_expansion(), libMesh::RBParameters::get_value(), libMesh::out, rb_scm_eval, libMesh::RBSCMEvaluation::SCM_UB_vectors, and libMesh::RBConstructionBase< CondensedEigenSystem >::set_params_from_training_set_and_broadcast().

Referenced by perform_SCM_greedy().

452 {
453  LOG_SCOPE("enrich_C_J()", "RBSCMConstruction");
454 
456 
457  rb_scm_eval->C_J.push_back(get_parameters());
458 
459  libMesh::out << std::endl << "SCM: Added mu = (";
460 
461  bool first = true;
462  for (const auto & pr : get_parameters())
463  {
464  if (!first)
465  libMesh::out << ",";
466  const std::string & param_name = pr.first;
467  RBParameters C_J_params = rb_scm_eval->C_J[rb_scm_eval->C_J.size()-1];
468  libMesh::out << C_J_params.get_value(param_name);
469  first = false;
470  }
471  libMesh::out << ")" << std::endl;
472 
473  // Finally, resize C_J_stability_vector and SCM_UB_vectors
474  rb_scm_eval->C_J_stability_vector.push_back(0.);
475 
476  std::vector<Real> zero_vector(get_rb_theta_expansion().get_n_A_terms());
477  rb_scm_eval->SCM_UB_vectors.push_back(zero_vector);
478 }
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...
std::vector< std::vector< Real > > SCM_UB_vectors
This matrix stores the infimizing vectors y_1( ),...,y_Q_a( ), for each in C_J, which are used in co...
std::vector< Real > C_J_stability_vector
Vector storing the (truth) stability values at the parameters in C_J.
std::vector< RBParameters > C_J
Vector storing the greedily selected parameters during SCM training.
const RBParameters & get_parameters() const
Get the current parameters.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object.
OStreamProxy out
virtual void set_params_from_training_set_and_broadcast(unsigned int global_index)
Load the specified training parameter and then broadcast to all processors.

◆ evaluate_stability_constant()

void libMesh::RBSCMConstruction::evaluate_stability_constant ( )
protectedvirtual

Compute the stability constant for current_parameters by solving a generalized eigenvalue problem over the truth space.

Definition at line 344 of file rb_scm_construction.C.

References add_scaled_symm_Aq(), Aq_inner_product(), B_inner_product(), libMesh::RBSCMEvaluation::C_J, libMesh::EigenSystem::eigen_solver, libMesh::RBSCMEvaluation::get_C_J_stability_constraint(), libMesh::CondensedEigenSystem::get_eigenpair(), libMesh::RBThetaExpansion::get_n_A_terms(), libMesh::EigenSystem::get_n_converged(), libMesh::RBParametrized::get_parameters(), get_rb_theta_expansion(), libMesh::libmesh_real(), libMesh::EigenSystem::matrix_A, libMesh::out, rb_scm_eval, libMesh::Real, libMesh::RBSCMEvaluation::set_C_J_stability_constraint(), set_eigensolver_properties(), libMesh::RBSCMEvaluation::set_SCM_UB_vector(), libMesh::SMALLEST_REAL, libMesh::System::solution, libMesh::CondensedEigenSystem::solve(), libMesh::TOLERANCE, and libMesh::SparseMatrix< T >::zero().

Referenced by perform_SCM_greedy().

345 {
346  LOG_SCOPE("evaluate_stability_constant()", "RBSCMConstruction");
347 
348  // Get current index of C_J
349  const unsigned int j = cast_int<unsigned int>(rb_scm_eval->C_J.size()-1);
350 
351  eigen_solver->set_position_of_spectrum(SMALLEST_REAL);
352 
353  // We assume B is set in system assembly
354  // For coercive problems, B is set to the inner product matrix
355  // For non-coercive time-dependent problems, B is set to the mass matrix
356 
357  // Set matrix A corresponding to mu_star
358  matrix_A->zero();
359  for (unsigned int q=0; q<get_rb_theta_expansion().get_n_A_terms(); q++)
360  {
362  }
363 
365  solve();
366  // TODO: Assert convergence for eigensolver
367 
368  unsigned int nconv = get_n_converged();
369  if (nconv != 0)
370  {
371  std::pair<Real, Real> eval = get_eigenpair(0);
372 
373  // ensure that the eigenvalue is real
374  libmesh_assert_less (eval.second, TOLERANCE);
375 
376  // Store the coercivity constant corresponding to mu_star
378  libMesh::out << std::endl << "Stability constant for C_J("<<j<<") = "
379  << rb_scm_eval->get_C_J_stability_constraint(j) << std::endl << std::endl;
380 
381  // Compute and store the vector y = (y_1, \ldots, y_Q) for the
382  // eigenvector currently stored in eigen_system.solution.
383  // We use this later to compute the SCM upper bounds.
385 
386  for (unsigned int q=0; q<get_rb_theta_expansion().get_n_A_terms(); q++)
387  {
388  Real norm_Aq2 = libmesh_real( Aq_inner_product(q, *solution, *solution) );
389 
390  rb_scm_eval->set_SCM_UB_vector(j,q,norm_Aq2/norm_B2);
391  }
392  }
393  else
394  libmesh_error_msg("Error: Eigensolver did not converge in evaluate_stability_constant");
395 }
T libmesh_real(T a)
Number Aq_inner_product(unsigned int q, const NumericVector< Number > &v, const NumericVector< Number > &w)
Compute the inner product between two vectors using matrix Aq.
void set_SCM_UB_vector(unsigned int j, unsigned int q, Real y_q)
Set entries of SCM_UB_vector, which stores the vector y, corresponding to the minimizing eigenvectors...
static constexpr Real TOLERANCE
unsigned int get_n_A_terms() const
Get Q_a, the number of terms in the affine expansion for the bilinear form.
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...
virtual void solve() override
Override to solve the condensed eigenproblem with the dofs in local_non_condensed_dofs_vector strippe...
Number B_inner_product(const NumericVector< Number > &v, const NumericVector< Number > &w) const
Compute the inner product between two vectors using the system&#39;s matrix_B.
virtual void zero()=0
Set all entries to 0.
std::vector< RBParameters > C_J
Vector storing the greedily selected parameters during SCM training.
void set_C_J_stability_constraint(unsigned int j, Real stability_constraint_in)
Set stability constraints (i.e.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
SparseMatrix< Number > * matrix_A
The system matrix for standard eigenvalue problems.
Definition: eigen_system.h:313
virtual void set_eigensolver_properties(int)
This function is called before truth eigensolves in compute_SCM_bounding_box and evaluate_stability_c...
const RBParameters & get_parameters() const
Get the current parameters.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Real get_C_J_stability_constraint(unsigned int j) const
Get stability constraints (i.e.
virtual void add_scaled_symm_Aq(unsigned int q_a, Number scalar)
Add the scaled symmetrized affine matrix from the associated RBSystem to matrix_A.
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver, defining which interface, i.e solver package to use.
Definition: eigen_system.h:362
OStreamProxy out
virtual std::pair< Real, Real > get_eigenpair(dof_id_type i) override
Override get_eigenpair() to retrieve the eigenpair for the condensed eigensolve.
unsigned int get_n_converged() const
Definition: eigen_system.h:130

◆ forward_qoi_parameter_sensitivity()

void libMesh::System::forward_qoi_parameter_sensitivity ( const QoISet qoi_indices,
const ParameterVector parameters,
SensitivityData sensitivities 
)
inlinevirtualinherited

Solves for parameter sensitivities using the forward method.

This method is only implemented in some derived classes.

Reimplemented in libMesh::ImplicitSystem.

Definition at line 2567 of file system.h.

Referenced by libMesh::System::qoi_parameter_sensitivity().

2570 {
2571  libmesh_not_implemented();
2572 }

◆ generalized()

bool libMesh::EigenSystem::generalized ( ) const
inherited

◆ generate_training_parameters_deterministic()

std::pair< std::size_t, std::size_t > libMesh::RBConstructionBase< CondensedEigenSystem >::generate_training_parameters_deterministic ( const Parallel::Communicator communicator,
const std::map< std::string, bool > &  log_param_scale,
std::map< std::string, std::vector< RBParameter >> &  local_training_parameters_in,
const unsigned int  n_global_training_samples_in,
const RBParameters min_parameters,
const RBParameters max_parameters,
const bool  serial_training_set = false 
)
staticinherited

Static helper function for generating a deterministic set of parameters.

Only works with 1 or 2 parameters (as defined by the lengths of min/max parameters vectors), otherwise throws an error. The parameter n_global_training_samples_in is the total number of parameters to generate, and they will be split across all the processors (unless serial_training_set=true) in the local_training_parameters_in map.

Returns
a pair of {first_local_index,last_local_index}

Definition at line 564 of file rb_construction_base.C.

References communicator, libMesh::RBParameters::get_value(), libMesh::RBParameters::n_parameters(), libMesh::Utility::pow(), and libMesh::Real.

571 {
572  libmesh_assert_equal_to ( min_parameters.n_parameters(), max_parameters.n_parameters() );
573  const unsigned int num_params = min_parameters.n_parameters();
574 
575  if (num_params == 0)
576  return {0,0};
577 
578  if (num_params > 3)
579  libmesh_not_implemented_msg("ERROR: Deterministic training sample generation "
580  "not implemented for more than three parameters.");
581 
582  // TODO - we don't support vector-data here yet. This would only apply in the case where
583  // min or max are vector-valued, and all the generated points need to stay within those ranges.
584  // But typically we expect that if we're calling this function, we only have 1 min and 1 max,
585  // so the generated values are single-valued as well. The .get_value() calls will throw an error
586  // if this is not the case.
587 
588  // Reinitialize training_parameters_in (but don't remove existing keys!)
589  const auto &[n_local_training_samples, first_local_index] =
590  calculate_n_local_samples_and_index(communicator, n_global_training_samples_in,
592  const auto last_local_index = first_local_index + n_local_training_samples;
593  for (const auto & pr : min_parameters)
594  local_training_parameters_in[pr.first] = std::vector<RBParameter>(n_local_training_samples);
595 
596  // n_training_samples_per_param has 3 entries, but entries after "num_params"
597  // are unused so we just set their value to 1. We need to set it to 1 (rather
598  // than 0) so that we don't skip the inner part of the triply-nested loop over
599  // n_training_samples_per_param below.
600  std::vector<unsigned int> n_training_samples_per_param(3);
601  for (unsigned int param=0; param<3; param++)
602  {
603  if (param < num_params)
604  {
605  n_training_samples_per_param[param] =
606  static_cast<unsigned int>( std::round(std::pow(static_cast<Real>(n_global_training_samples_in), 1./num_params)) );
607  }
608  else
609  {
610  n_training_samples_per_param[param] = 1;
611  }
612  }
613 
614  {
615  // The current implementation assumes that we have the same number of
616  // samples in each parameter, so we check that n_training_samples_in
617  // is consistent with this assumption.
618  unsigned int total_samples_check = 1;
619  for (unsigned int n_samples : n_training_samples_per_param)
620  {
621  total_samples_check *= n_samples;
622  }
623 
624  libmesh_error_msg_if(total_samples_check != n_global_training_samples_in,
625  "Error: Number of training samples = "
626  << n_global_training_samples_in
627  << " does not enable a uniform grid of samples with "
628  << num_params << " parameters. Try "
629  << total_samples_check << " samples instead?");
630  }
631 
632  // First we make a list of training samples associated with each parameter,
633  // then we take a tensor product to obtain the final set of training samples.
634  std::vector<std::vector<Real>> training_samples_per_param(num_params);
635  {
636  unsigned int i = 0;
637  for (const auto & pr : min_parameters)
638  {
639  const std::string & param_name = pr.first;
640  const bool use_log_scaling = libmesh_map_find(log_param_scale, param_name);
641  Real min_param = min_parameters.get_value(param_name);
642  Real max_param = max_parameters.get_value(param_name);
643 
644  training_samples_per_param[i].resize(n_training_samples_per_param[i]);
645 
646  for (unsigned int j=0; j<n_training_samples_per_param[i]; j++)
647  {
648  // Generate log10 scaled training parameters
649  if (use_log_scaling)
650  {
651  Real epsilon = 1.e-6; // Prevent rounding errors triggering asserts
652  Real log_min = std::log10(min_param + epsilon);
653  Real log_range = std::log10( (max_param-epsilon) / (min_param+epsilon) );
654  Real step_size = log_range /
655  std::max((unsigned int)1,(n_training_samples_per_param[i]-1));
656 
657  if (j<(n_training_samples_per_param[i]-1))
658  {
659  training_samples_per_param[i][j] = std::pow(10., log_min + j*step_size );
660  }
661  else
662  {
663  // due to rounding error, the last parameter can be slightly
664  // bigger than max_parameters, hence snap back to the max
665  training_samples_per_param[i][j] = max_param;
666  }
667  }
668  else
669  {
670  // Generate linearly scaled training parameters
671  Real step_size = (max_param - min_param) /
672  std::max((unsigned int)1,(n_training_samples_per_param[i]-1));
673  training_samples_per_param[i][j] = j*step_size + min_param;
674  }
675 
676  }
677  i++;
678  }
679  }
680 
681  // Now load into training_samples_in
682  {
683  std::vector<unsigned int> indices(3);
684  unsigned int index_count = 0;
685  for (indices[0]=0; indices[0]<n_training_samples_per_param[0]; indices[0]++)
686  {
687  for (indices[1]=0; indices[1]<n_training_samples_per_param[1]; indices[1]++)
688  {
689  for (indices[2]=0; indices[2]<n_training_samples_per_param[2]; indices[2]++)
690  {
691  unsigned int param_count = 0;
692  for (const auto & pr : min_parameters)
693  {
694  std::vector<RBParameter> & training_vector =
695  libmesh_map_find(local_training_parameters_in, pr.first);
696  if (first_local_index <= index_count && index_count < last_local_index)
697  training_vector[index_count - first_local_index] =
698  {training_samples_per_param[param_count][indices[param_count]]};
699 
700  param_count++;
701  }
702  index_count++;
703  }
704  }
705  }
706  }
707  return {first_local_index, first_local_index+n_local_training_samples};
708 }
T pow(const T &x)
Definition: utility.h:328
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...

◆ generate_training_parameters_random()

std::pair< std::size_t, std::size_t > libMesh::RBConstructionBase< CondensedEigenSystem >::generate_training_parameters_random ( const Parallel::Communicator communicator,
const std::map< std::string, bool > &  log_param_scale,
std::map< std::string, std::vector< RBParameter >> &  local_training_parameters_in,
const unsigned int  n_global_training_samples_in,
const RBParameters min_parameters,
const RBParameters max_parameters,
const int  training_parameters_random_seed = -1,
const bool  serial_training_set = false 
)
staticinherited

Static helper function for generating a randomized set of parameters.

The parameter n_global_training_samples_in is the total number of parameters to generate, and they will be split across all the processors (unless serial_training_set=true) in the local_training_parameters_in map.

Returns
a pair of {first_local_index,last_local_index}

Definition at line 464 of file rb_construction_base.C.

References communicator, libMesh::RBParameters::get_value(), libMesh::make_range(), libMesh::RBParameters::n_parameters(), libMesh::Utility::pow(), and libMesh::Real.

472 {
473  const unsigned int num_params = min_parameters.n_parameters();
474  libmesh_error_msg_if(num_params!=max_parameters.n_parameters(),
475  "Number of parameters must be identical for min/max.");
476 
477  // Clear training_parameters_in
478  local_training_parameters_in.clear();
479 
480  if (num_params == 0)
481  return {0,0};
482 
483  if (training_parameters_random_seed < 0)
484  {
485  if (!serial_training_set)
486  {
487  // seed the random number generator with the system time
488  // and the processor ID so that the seed is different
489  // on different processors
490  std::srand( static_cast<unsigned>( std::time(0)*(1+communicator.rank()) ));
491  }
492  else
493  {
494  // seed the random number generator with the system time
495  // only so that the seed is the same on all processors
496  //
497  // Note that we broadcast the time on processor 0 to make
498  // sure all processors agree.
499  unsigned int current_time = static_cast<unsigned>( std::time(0) );
500  communicator.broadcast(current_time, 0);
501  std::srand(current_time);
502  }
503  }
504  else
505  {
506  if (!serial_training_set)
507  {
508  // seed the random number generator with the provided value
509  // and the processor ID so that the seed is different
510  // on different processors
511  std::srand( static_cast<unsigned>( training_parameters_random_seed*(1+communicator.rank()) ));
512  }
513  else
514  {
515  // seed the random number generator with the provided value
516  // so that the seed is the same on all processors
517  std::srand( static_cast<unsigned>( training_parameters_random_seed ));
518  }
519  }
520 
521  // TODO - we don't support vector-data here yet. This would only apply in the case where
522  // min or max are vector-valued, and all the generated points need to stay within those ranges.
523  // But typically we expect that if we're calling this function, we only have 1 min and 1 max,
524  // so the generated values are single-valued as well. The .get_value() calls will throw an error
525  // if this is not the case.
526 
527  // initialize training_parameters_in
528  const auto & [n_local_training_samples, first_local_index] =
529  calculate_n_local_samples_and_index(communicator, n_global_training_samples_in,
531  for (const auto & pr : min_parameters)
532  local_training_parameters_in[pr.first] = std::vector<RBParameter>(n_local_training_samples);
533 
534  // finally, set the values
535  for (auto & [param_name, sample_vector] : local_training_parameters_in)
536  {
537  for (auto i : make_range(n_local_training_samples))
538  {
539  Real random_number = static_cast<Real>(std::rand()) / RAND_MAX; // in range [0,1]
540 
541  // Generate log10 scaled training parameters
542  if (libmesh_map_find(log_param_scale, param_name))
543  {
544  Real log_min = std::log10(min_parameters.get_value(param_name));
545  Real log_range = std::log10(max_parameters.get_value(param_name) / min_parameters.get_value(param_name));
546 
547  sample_vector[i] = {std::pow(10., log_min + random_number*log_range )};
548  }
549  // Generate linearly scaled training parameters
550  else
551  {
552  sample_vector[i] = {
553  random_number * (max_parameters.get_value(param_name) -
554  min_parameters.get_value(param_name)) +
555  min_parameters.get_value(param_name)};
556  }
557  }
558  }
559  return {first_local_index, first_local_index+n_local_training_samples};
560 }
T pow(const T &x)
Definition: utility.h:328
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
DIE A HORRIBLE DEATH HERE typedef MPI_Comm communicator
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...

◆ get_adjoint_rhs() [1/2]

NumericVector< Number > & libMesh::System::get_adjoint_rhs ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's adjoint rhs vectors, by default the one corresponding to the first qoi. This what the user's QoI derivative code should assemble when setting up an adjoint problem

Definition at line 1255 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::adjoint_solve(), libMesh::FEMSystem::assemble_qoi_derivative(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), and libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve().

1256 {
1257  std::ostringstream adjoint_rhs_name;
1258  adjoint_rhs_name << "adjoint_rhs" << i;
1259 
1260  return this->get_vector(adjoint_rhs_name.str());
1261 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_adjoint_rhs() [2/2]

const NumericVector< Number > & libMesh::System::get_adjoint_rhs ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's adjoint rhs vectors, by default the one corresponding to the first qoi.

Definition at line 1265 of file system.C.

References libMesh::System::get_vector().

1266 {
1267  std::ostringstream adjoint_rhs_name;
1268  adjoint_rhs_name << "adjoint_rhs" << i;
1269 
1270  return this->get_vector(adjoint_rhs_name.str());
1271 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_adjoint_solution() [1/2]

NumericVector< Number > & libMesh::System::get_adjoint_solution ( unsigned int  i = 0)
inherited

◆ get_adjoint_solution() [2/2]

const NumericVector< Number > & libMesh::System::get_adjoint_solution ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's adjoint solution vectors, by default the one corresponding to the first qoi.

Definition at line 1203 of file system.C.

References libMesh::System::get_vector().

1204 {
1205  std::ostringstream adjoint_name;
1206  adjoint_name << "adjoint_solution" << i;
1207 
1208  return this->get_vector(adjoint_name.str());
1209 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_all_variable_numbers()

void libMesh::System::get_all_variable_numbers ( std::vector< unsigned int > &  all_variable_numbers) const
inherited

Fills all_variable_numbers with all the variable numbers for the variables that have been added to this system.

Definition at line 1565 of file system.C.

References libMesh::System::_variable_numbers, and libMesh::System::n_vars().

Referenced by MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), and SystemsTest::testProjectCubeWithMeshFunction().

1566 {
1567  all_variable_numbers.resize(n_vars());
1568 
1569  unsigned int count = 0;
1570  for (auto vn : _variable_numbers)
1571  all_variable_numbers[count++] = vn.second;
1572 }
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151
unsigned int n_vars() const
Definition: system.h:2349

◆ get_closest_value()

Real libMesh::RBParametrized::get_closest_value ( Real  value,
const std::vector< Real > &  list_of_values 
)
staticinherited
Returns
The closest entry to value from list_of_values.

Definition at line 443 of file rb_parametrized.C.

References std::abs(), distance(), libMesh::Real, and value.

Referenced by libMesh::RBParametrized::is_value_in_list().

444 {
445  libmesh_error_msg_if(list_of_values.empty(), "Error: list_of_values is empty.");
446 
447  Real min_distance = std::numeric_limits<Real>::max();
448  Real closest_val = 0.;
449  for (const auto & current_value : list_of_values)
450  {
451  Real distance = std::abs(value - current_value);
452  if (distance < min_distance)
453  {
454  min_distance = distance;
455  closest_val = current_value;
456  }
457  }
458 
459  return closest_val;
460 }
Real distance(const Point &p)
ADRealEigenVector< T, D, asd > abs(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:57
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const bool value
Definition: xdr_io.C:54

◆ get_condensed_matrix_A()

SparseMatrix< Number > & libMesh::CondensedEigenSystem::get_condensed_matrix_A ( ) const
inherited
Returns
The system matrix used for standard eigenvalue problems

Definition at line 218 of file condensed_eigen_system.C.

References libMesh::CondensedEigenSystem::condensed_matrix_A, libMesh::System::get_matrix(), and libMesh::libmesh_assert().

219 {
221  libmesh_assert_equal_to(&get_matrix("Condensed Eigen Matrix A"), condensed_matrix_A);
222  return *condensed_matrix_A;
223 }
SparseMatrix< Number > * condensed_matrix_A
The (condensed) system matrix for standard eigenvalue problems.
libmesh_assert(ctx)
const SparseMatrix< Number > & get_matrix(std::string_view mat_name) const
Definition: system.C:1073

◆ get_condensed_matrix_B()

SparseMatrix< Number > & libMesh::CondensedEigenSystem::get_condensed_matrix_B ( ) const
inherited
Returns
The second system matrix used for generalized eigenvalue problems.

Definition at line 227 of file condensed_eigen_system.C.

References libMesh::CondensedEigenSystem::condensed_matrix_B, libMesh::System::get_matrix(), and libMesh::libmesh_assert().

228 {
230  libmesh_assert_equal_to(&get_matrix("Condensed Eigen Matrix B"), condensed_matrix_B);
231  return *condensed_matrix_B;
232 }
SparseMatrix< Number > * condensed_matrix_B
A second (condensed) system matrix for generalized eigenvalue problems.
libmesh_assert(ctx)
const SparseMatrix< Number > & get_matrix(std::string_view mat_name) const
Definition: system.C:1073

◆ get_constraint_object()

System::Constraint & libMesh::System::get_constraint_object ( )
inherited

Return the user object for imposing constraints.

Definition at line 2174 of file system.C.

References libMesh::System::_constrain_system_object.

2175 {
2176  libmesh_assert_msg(_constrain_system_object,"No constraint object available.");
2177  return *_constrain_system_object;
2178 }
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081

◆ get_deterministic_training_parameter_name()

const std::string& libMesh::RBConstructionBase< CondensedEigenSystem >::get_deterministic_training_parameter_name ( ) const
inherited

Get the name of the parameter that we will generate deterministic training parameters for.

◆ get_discrete_parameter_values()

const std::map< std::string, std::vector< Real > > & libMesh::RBParametrized::get_discrete_parameter_values ( ) const
inherited

Get a const reference to the discrete parameter values.

Definition at line 370 of file rb_parametrized.C.

References libMesh::RBParametrized::_discrete_parameter_values, and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBParametrized::check_if_valid_params(), libMesh::RBParametrized::get_n_discrete_params(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBParametrized::print_discrete_parameter_values(), and libMesh::RBParametrized::write_discrete_parameter_values_to_file().

371 {
372  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_discrete_parameter_values");
373 
375 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
std::map< std::string, std::vector< Real > > _discrete_parameter_values
Map that defines the allowable values of any discrete parameters.

◆ get_dof_map() [1/2]

const DofMap & libMesh::System::get_dof_map ( ) const
inlineinherited
Returns
A constant reference to this system's _dof_map.

Definition at line 2293 of file system.h.

References libMesh::System::_dof_map.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::ExactSolution::_compute_error(), libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::DifferentiableSystem::add_dot_var_dirichlet_bcs(), libMesh::HPCoarsenTest::add_projection(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::ImplicitSystem::adjoint_solve(), libMesh::NewmarkSolver::advance_timestep(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::EquationSystems::allgather(), libMesh::TransientRBConstruction::allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), alternative_fe_assembly(), assemble(), LinearElasticity::assemble(), assemble_1D(), AssembleOptimization::assemble_A_and_F(), assemble_and_solve(), assemble_biharmonic(), assemble_divgrad(), assemble_elasticity(), assemble_ellipticdg(), assemble_func(), assemble_helmholtz(), assemble_laplace(), assemble_mass(), assemble_matrices(), assemble_matrix_and_rhs(), assemble_poisson(), assemble_SchroedingerEquation(), assemble_shell(), assemble_stokes(), assemble_wave(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::PetscDMWrapper::build_sf(), libMesh::System::calculate_norm(), compute_jacobian(), compute_residual(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), MyConstraint::constrain(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), DMCreateDomainDecomposition_libMesh(), DMCreateFieldDecomposition_libMesh(), DMlibMeshFunction(), DMlibMeshJacobian(), DMlibMeshSetSystem_libMesh(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), fe_assembly(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubFunctor::find_dofs_to_send(), libMesh::System::get_info(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::SecondOrderUnsteadySolver::init_data(), libMesh::UnsteadySolver::init_data(), HeatSystem::init_data(), SimpleRBConstruction::init_data(), LaplaceSystem::init_dirichlet_bcs(), libMesh::FEMContext::init_internal_data(), libMesh::EigenSystem::init_matrices(), libMesh::System::init_matrices(), libMesh::CondensedEigenSystem::initialize_condensed_dofs(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), LaplaceYoung::jacobian(), LargeDeformationElasticity::jacobian(), libMesh::System::late_matrix_init(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::System::local_dof_indices(), AssembleOptimization::lower_and_upper_bounds(), main(), libMesh::DofMap::max_constraint_error(), LinearElasticityWithContact::move_mesh(), libMesh::DGFEMContext::neighbor_side_fe_reinit(), libMesh::UnsteadySolver::old_nonlinear_solution(), libMesh::SecondOrderUnsteadySolver::old_solution_accel(), libMesh::SecondOrderUnsteadySolver::old_solution_rate(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()(), perform_SCM_greedy(), periodic_bc_test_poisson(), libMesh::petsc_auto_fieldsplit(), libMesh::ErrorVector::plot_error(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::FEMContext::pre_fe_reinit(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::System::re_update(), libMesh::System::read_parallel_data(), libMesh::System::read_SCALAR_dofs(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::System::reinit(), libMesh::System::reinit_constraints(), libMesh::EquationSystems::reinit_solutions(), LaplaceYoung::residual(), LargeDeformationElasticity::residual(), LinearElasticityWithContact::residual_and_jacobian(), libMesh::UnsteadySolver::retrieve_timestep(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), libMesh::HPCoarsenTest::select_refinement(), libMesh::ImplicitSystem::sensitivity_solve(), libMesh::RBConstruction::set_context_solution_vec(), libMesh::PetscDMWrapper::set_point_range_in_section(), set_system_parameters(), FETestBase< order, family, elem_type, 1 >::setUp(), SolidSystem::side_time_derivative(), libMesh::NewtonSolver::solve(), libMesh::PetscDiffSolver::solve(), libMesh::EigenSystem::solve(), libMesh::RBConstruction::solve_for_matrix_and_rhs(), ConstraintOperatorTest::test1DCoarseningNewNodes(), ConstraintOperatorTest::test1DCoarseningOperator(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), MeshFunctionTest::test_subdomain_id_sets(), SystemsTest::testBlockRestrictedVarNDofs(), DofMapTest::testConstraintLoopDetection(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), EquationSystemsTest::testDisableDefaultGhosting(), SystemsTest::testDofCouplingWithVarGroups(), DofMapTest::testDofOwner(), MeshInputTest::testDynaReadPatch(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), MeshAssignTest::testMeshMoveAssign(), PeriodicBCTest::testPeriodicBC(), SystemsTest::testPostInitAddVectorTypeChange(), SystemsTest::testProjectCubeWithMeshFunction(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), InfFERadialTest::testRefinement(), EquationSystemsTest::testSelectivePRefine(), BoundaryInfoTest::testShellFaceConstraints(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), libMesh::UnsteadySolver::update(), libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve(), libMesh::ImplicitSystem::weighted_sensitivity_solve(), libMesh::Nemesis_IO_Helper::write_nodal_solution(), libMesh::System::write_parallel_data(), libMesh::EnsightIO::write_scalar_ascii(), libMesh::System::write_SCALAR_dofs(), libMesh::EnsightIO::write_vector_ascii(), and libMesh::RBConstruction::zero_constrained_dofs_on_vector().

2294 {
2295  return *_dof_map;
2296 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ get_dof_map() [2/2]

DofMap & libMesh::System::get_dof_map ( )
inlineinherited
Returns
A writable reference to this system's _dof_map.

Definition at line 2301 of file system.h.

References libMesh::System::_dof_map.

2302 {
2303  return *_dof_map;
2304 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ get_eigen_solver() [1/2]

const EigenSolver< Number > & libMesh::EigenSystem::get_eigen_solver ( ) const
inherited
Returns
A const reference to the EigenSolver.

Definition at line 460 of file eigen_system.C.

References libMesh::EigenSystem::eigen_solver, and libMesh::libmesh_assert().

Referenced by main().

461 {
463  return *eigen_solver;
464 }
libmesh_assert(ctx)
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver, defining which interface, i.e solver package to use.
Definition: eigen_system.h:362

◆ get_eigen_solver() [2/2]

EigenSolver< Number > & libMesh::EigenSystem::get_eigen_solver ( )
inherited
Returns
A reference to the EigenSolver.

Definition at line 467 of file eigen_system.C.

References libMesh::EigenSystem::eigen_solver, and libMesh::libmesh_assert().

468 {
470  return *eigen_solver;
471 }
libmesh_assert(ctx)
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver, defining which interface, i.e solver package to use.
Definition: eigen_system.h:362

◆ get_eigenpair()

std::pair< Real, Real > libMesh::CondensedEigenSystem::get_eigenpair ( dof_id_type  i)
overridevirtualinherited

Override get_eigenpair() to retrieve the eigenpair for the condensed eigensolve.

We only set the non-condensed entries of the solution vector (the condensed entries are set to zero by default).

Reimplemented from libMesh::EigenSystem.

Definition at line 178 of file condensed_eigen_system.C.

References libMesh::NumericVector< T >::build(), libMesh::ParallelObject::comm(), libMesh::CondensedEigenSystem::condensed_dofs_initialized, libMesh::EigenSystem::eigen_solver, libMesh::EigenSystem::get_eigenpair(), libMesh::libmesh_assert(), libMesh::CondensedEigenSystem::local_non_condensed_dofs_vector, libMesh::make_range(), libMesh::PARALLEL, libMesh::System::solution, TIMPI::Communicator::sum(), and libMesh::System::update().

Referenced by compute_SCM_bounding_box(), evaluate_stability_constant(), and main().

179 {
180  LOG_SCOPE("get_eigenpair()", "CondensedEigenSystem");
181 
182  // If we haven't initialized any condensed dofs,
183  // just use the default eigen_system
185  return Parent::get_eigenpair(i);
186 
187  // If we reach here, then there should be some non-condensed dofs
189 
190  // This function assumes that condensed_solve has just been called.
191  // If this is not the case, then we will trip an asset in get_eigenpair
192  std::unique_ptr<NumericVector<Number>> temp = NumericVector<Number>::build(this->comm());
193  const dof_id_type n_local =
194  cast_int<dof_id_type>(local_non_condensed_dofs_vector.size());
195  dof_id_type n = n_local;
196  this->comm().sum(n);
197 
198  temp->init (n, n_local, false, PARALLEL);
199 
200  std::pair<Real, Real> eval = eigen_solver->get_eigenpair (i, *temp);
201 
202  // Now map temp to solution. Loop over local entries of local_non_condensed_dofs_vector
203  this->solution->zero();
204  for (auto j : make_range(n_local))
205  {
207  solution->set(index,(*temp)(temp->first_local_index()+j));
208  }
209 
210  solution->close();
211  this->update();
212 
213  return eval;
214 }
virtual std::pair< Real, Real > get_eigenpair(dof_id_type i)
Definition: eigen_system.C:286
void sum(T &r) const
const Parallel::Communicator & comm() const
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
virtual void update()
Update the local values to reflect the solution on neighboring processors.
Definition: system.C:493
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver, defining which interface, i.e solver package to use.
Definition: eigen_system.h:362
std::vector< dof_id_type > local_non_condensed_dofs_vector
Vector storing the local dof indices that will not be condensed.
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
bool condensed_dofs_initialized
A private flag to indicate whether the condensed dofs have been initialized.
uint8_t dof_id_type
Definition: id_types.h:67

◆ get_eigenproblem_type()

EigenProblemType libMesh::EigenSystem::get_eigenproblem_type ( ) const
inlineinherited
Returns
The eigen problem type.

Definition at line 145 of file eigen_system.h.

References libMesh::EigenSystem::_eigen_problem_type.

145 {return _eigen_problem_type;}
EigenProblemType _eigen_problem_type
The type of the eigenvalue problem.
Definition: eigen_system.h:407

◆ get_eigenvalue()

std::pair< Real, Real > libMesh::EigenSystem::get_eigenvalue ( dof_id_type  i)
virtualinherited
Returns
Real and imaginary part of the ith eigenvalue but does not copy the respective eigen vector to the solution vector.

Definition at line 292 of file eigen_system.C.

References libMesh::EigenSystem::eigen_solver.

293 {
294  return eigen_solver->get_eigenvalue (i);
295 }
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver, defining which interface, i.e solver package to use.
Definition: eigen_system.h:362

◆ get_equation_systems() [1/2]

const EquationSystems& libMesh::System::get_equation_systems ( ) const
inlineinherited
Returns
A constant reference to this system's parent EquationSystems object.

Definition at line 730 of file system.h.

References libMesh::System::_equation_systems.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), add_scaled_symm_Aq(), libMesh::NewmarkSystem::clear(), libMesh::FrequencySystem::clear_all(), compute_jacobian(), compute_residual(), LinearElasticityWithContact::compute_stresses(), SolidSystem::element_time_derivative(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ExactErrorEstimator::find_squared_element_error(), libMesh::ImplicitSystem::get_linear_solve_parameters(), SolidSystem::init_data(), HeatSystem::init_data(), libMesh::FrequencySystem::init_data(), LaplaceYoung::jacobian(), load_matrix_B(), LinearElasticityWithContact::move_mesh(), libMesh::FrequencySystem::n_frequencies(), perform_SCM_greedy(), libMesh::System::point_gradient(), libMesh::System::point_value(), libMesh::InterMeshProjection::project_system_vectors(), LaplaceYoung::residual(), LinearElasticityWithContact::residual_and_jacobian(), libMesh::FileHistoryData::retrieve_adjoint_solution(), libMesh::FileHistoryData::retrieve_primal_solution(), libMesh::FileHistoryData::rewrite_stored_solution(), SolidSystem::save_initial_mesh(), libMesh::FrequencySystem::set_current_frequency(), libMesh::FrequencySystem::set_frequencies(), libMesh::FrequencySystem::set_frequencies_by_range(), libMesh::FrequencySystem::set_frequencies_by_steps(), libMesh::NewmarkSystem::set_newmark_parameters(), libMesh::NonlinearImplicitSystem::set_solver_parameters(), SolidSystem::side_time_derivative(), libMesh::EigenSystem::solve(), libMesh::CondensedEigenSystem::solve(), libMesh::FrequencySystem::solve(), libMesh::LinearImplicitSystem::solve(), libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::FileHistoryData::store_adjoint_solution(), libMesh::FileHistoryData::store_initial_solution(), libMesh::FileHistoryData::store_primal_solution(), MeshFunctionTest::test_p_level(), MeshFunctionTest::test_subdomain_id_sets(), MeshAssignTest::testMeshMoveAssign(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::DirectSolutionTransfer::transfer(), libMesh::MeshfreeSolutionTransfer::transfer(), libMesh::DTKSolutionTransfer::transfer(), libMesh::TransientRBConstruction::truth_solve(), libMesh::RBConstruction::truth_solve(), and libMesh::WrappedFunction< Output >::WrappedFunction().

730 { return _equation_systems; }
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119

◆ get_equation_systems() [2/2]

EquationSystems& libMesh::System::get_equation_systems ( )
inlineinherited
Returns
A reference to this system's parent EquationSystems object.

Definition at line 735 of file system.h.

References libMesh::System::_equation_systems.

735 { return _equation_systems; }
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119

◆ get_first_local_training_index()

numeric_index_type libMesh::RBConstructionBase< CondensedEigenSystem >::get_first_local_training_index ( ) const
inherited

Get the first local index of the training parameters.

Definition at line 184 of file rb_construction_base.C.

Referenced by compute_SCM_bounds_on_training_set().

185 {
186  libmesh_error_msg_if(!_training_parameters_initialized,
187  "Error: training parameters must first be initialized.");
188 
189  // First we check if there are no parameters here, and in that case we
190  // return 0 for a serial training set and comm().rank() for a parallel
191  // training set. This is consistent with get_n_training_samples(), and
192  // avoids accessing training_parameters.begin() when training_parameters
193  // is empty.
194  if (_training_parameters.empty())
195  {
197  return 0;
198  else
199  return this->comm().rank();
200  }
201 
202  return _first_local_index;
203 }
processor_id_type rank() const
const Parallel::Communicator & comm() const
numeric_index_type _first_local_index
The first sample-vector index from the global vector which is stored in the _training_parameters on t...
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ get_global_max_error_pair()

void libMesh::RBConstructionBase< CondensedEigenSystem >::get_global_max_error_pair ( const Parallel::Communicator communicator,
std::pair< numeric_index_type, Real > &  error_pair 
)
staticprotectedinherited

Static function to return the error pair (index,error) that is corresponds to the largest error on all processors.

Definition at line 133 of file rb_construction_base.C.

References communicator.

Referenced by compute_SCM_bounds_on_training_set().

135 {
136  // Set error_pair.second to the maximum global value and also
137  // find which processor contains the maximum value
138  unsigned int proc_ID_index;
139  communicator.maxloc(error_pair.second, proc_ID_index);
140 
141  // Then broadcast error_pair.first from proc_ID_index
142  communicator.broadcast(error_pair.first, proc_ID_index);
143 }
DIE A HORRIBLE DEATH HERE typedef MPI_Comm communicator

◆ get_info() [1/3]

std::string libMesh::ReferenceCounter::get_info ( )
staticinherited

Gets a string containing the reference information.

Definition at line 47 of file reference_counter.C.

References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().

Referenced by libMesh::ReferenceCounter::print_info().

48 {
49 #if defined(LIBMESH_ENABLE_REFERENCE_COUNTING) && defined(DEBUG)
50 
51  std::ostringstream oss;
52 
53  oss << '\n'
54  << " ---------------------------------------------------------------------------- \n"
55  << "| Reference count information |\n"
56  << " ---------------------------------------------------------------------------- \n";
57 
58  for (const auto & [name, cd] : _counts)
59  oss << "| " << name << " reference count information:\n"
60  << "| Creations: " << cd.first << '\n'
61  << "| Destructions: " << cd.second << '\n';
62 
63  oss << " ---------------------------------------------------------------------------- \n";
64 
65  return oss.str();
66 
67 #else
68 
69  return "";
70 
71 #endif
72 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
static Counts _counts
Actually holds the data.

◆ get_info() [2/3]

std::string libMesh::ReferenceCounter::get_info ( )
staticinherited

Gets a string containing the reference information.

Definition at line 47 of file reference_counter.C.

References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().

Referenced by libMesh::ReferenceCounter::print_info().

48 {
49 #if defined(LIBMESH_ENABLE_REFERENCE_COUNTING) && defined(DEBUG)
50 
51  std::ostringstream oss;
52 
53  oss << '\n'
54  << " ---------------------------------------------------------------------------- \n"
55  << "| Reference count information |\n"
56  << " ---------------------------------------------------------------------------- \n";
57 
58  for (const auto & [name, cd] : _counts)
59  oss << "| " << name << " reference count information:\n"
60  << "| Creations: " << cd.first << '\n'
61  << "| Destructions: " << cd.second << '\n';
62 
63  oss << " ---------------------------------------------------------------------------- \n";
64 
65  return oss.str();
66 
67 #else
68 
69  return "";
70 
71 #endif
72 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
static Counts _counts
Actually holds the data.

◆ get_info() [3/3]

std::string libMesh::System::get_info ( ) const
inherited
Returns
A string containing information about the system.

Definition at line 1988 of file system.C.

References libMesh::ParallelObject::comm(), libMesh::FEType::family, libMesh::System::get_dof_map(), libMesh::DofMap::get_info(), libMesh::FEType::inf_map, libMesh::make_range(), TIMPI::Communicator::max(), libMesh::System::n_constrained_dofs(), libMesh::System::n_dofs(), libMesh::System::n_local_constrained_dofs(), libMesh::System::n_local_dofs(), libMesh::System::n_matrices(), libMesh::System::n_variable_groups(), libMesh::VariableGroup::n_variables(), libMesh::System::n_vectors(), libMesh::VariableGroup::name(), libMesh::System::name(), libMesh::System::number(), libMesh::FEType::order, libMesh::FEType::radial_family, libMesh::FEType::radial_order, libMesh::System::system_type(), libMesh::Variable::type(), libMesh::DofMap::variable_group(), and libMesh::System::variable_group().

1989 {
1990  std::ostringstream oss;
1991 
1992 
1993  const std::string & sys_name = this->name();
1994 
1995  oss << " System #" << this->number() << ", \"" << sys_name << "\"\n"
1996  << " Type \"" << this->system_type() << "\"\n"
1997  << " Variables=";
1998 
1999  for (auto vg : make_range(this->n_variable_groups()))
2000  {
2001  const VariableGroup & vg_description (this->variable_group(vg));
2002 
2003  if (vg_description.n_variables() > 1) oss << "{ ";
2004  for (auto vn : make_range(vg_description.n_variables()))
2005  oss << "\"" << vg_description.name(vn) << "\" ";
2006  if (vg_description.n_variables() > 1) oss << "} ";
2007  }
2008 
2009  oss << '\n';
2010 
2011  oss << " Finite Element Types=";
2012 #ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS
2013  for (auto vg : make_range(this->n_variable_groups()))
2014  oss << "\""
2015  << Utility::enum_to_string<FEFamily>(this->get_dof_map().variable_group(vg).type().family)
2016  << "\" ";
2017 #else
2018  for (auto vg : make_range(this->n_variable_groups()))
2019  {
2020  oss << "\""
2021  << Utility::enum_to_string<FEFamily>(this->get_dof_map().variable_group(vg).type().family)
2022  << "\", \""
2023  << Utility::enum_to_string<FEFamily>(this->get_dof_map().variable_group(vg).type().radial_family)
2024  << "\" ";
2025  }
2026 
2027  oss << '\n' << " Infinite Element Mapping=";
2028  for (auto vg : make_range(this->n_variable_groups()))
2029  oss << "\""
2030  << Utility::enum_to_string<InfMapType>(this->get_dof_map().variable_group(vg).type().inf_map)
2031  << "\" ";
2032 #endif
2033 
2034  oss << '\n';
2035 
2036  oss << " Approximation Orders=";
2037  for (auto vg : make_range(this->n_variable_groups()))
2038  {
2039 #ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS
2040  oss << "\""
2041  << Utility::enum_to_string<Order>(this->get_dof_map().variable_group(vg).type().order)
2042  << "\" ";
2043 #else
2044  oss << "\""
2045  << Utility::enum_to_string<Order>(this->get_dof_map().variable_group(vg).type().order)
2046  << "\", \""
2047  << Utility::enum_to_string<Order>(this->get_dof_map().variable_group(vg).type().radial_order)
2048  << "\" ";
2049 #endif
2050  }
2051 
2052  oss << '\n';
2053 
2054  oss << " n_dofs()=" << this->n_dofs() << '\n';
2055  dof_id_type local_dofs = this->n_local_dofs();
2056  oss << " n_local_dofs()=" << local_dofs << '\n';
2057  this->comm().max(local_dofs);
2058  oss << " max(n_local_dofs())=" << local_dofs << '\n';
2059 #ifdef LIBMESH_ENABLE_CONSTRAINTS
2060  oss << " n_constrained_dofs()=" << this->n_constrained_dofs() << '\n';
2061  oss << " n_local_constrained_dofs()=" << this->n_local_constrained_dofs() << '\n';
2062  dof_id_type local_unconstrained_dofs = this->n_local_dofs() - this->n_local_constrained_dofs();
2063  this->comm().max(local_unconstrained_dofs);
2064  oss << " max(local unconstrained dofs)=" << local_unconstrained_dofs << '\n';
2065 #endif
2066 
2067  oss << " " << "n_vectors()=" << this->n_vectors() << '\n';
2068  oss << " " << "n_matrices()=" << this->n_matrices() << '\n';
2069  // oss << " " << "n_additional_matrices()=" << this->n_additional_matrices() << '\n';
2070 
2071  oss << this->get_dof_map().get_info();
2072 
2073  return oss.str();
2074 }
FEFamily family
The type of finite element.
Definition: fe_type.h:207
OrderWrapper radial_order
The approximation order in radial direction of the infinite element.
Definition: fe_type.h:240
unsigned int n_variable_groups() const
Definition: system.h:2357
const Parallel::Communicator & comm() const
OrderWrapper order
The approximation order of the element.
Definition: fe_type.h:201
dof_id_type n_local_dofs() const
Definition: system.C:150
std::string get_info() const
Gets summary info about the sparsity bandwidth and constraints.
Definition: dof_map.C:2922
dof_id_type n_dofs() const
Definition: system.C:113
unsigned int number() const
Definition: system.h:2269
unsigned int n_vectors() const
Definition: system.h:2477
const VariableGroup & variable_group(const unsigned int c) const
Definition: dof_map.h:2104
InfMapType inf_map
The coordinate mapping type of the infinite element.
Definition: fe_type.h:261
unsigned int n_matrices() const
Definition: system.h:2594
FEFamily radial_family
The type of approximation in radial direction.
Definition: fe_type.h:253
virtual std::string system_type() const
Definition: system.h:505
void max(const T &r, T &o, Request &req) const
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
dof_id_type n_local_constrained_dofs() const
Definition: system.C:135
const std::string & name() const
Definition: system.h:2261
const DofMap & get_dof_map() const
Definition: system.h:2293
const VariableGroup & variable_group(unsigned int vg) const
Return a constant reference to VariableGroup vg.
Definition: system.h:2387
dof_id_type n_constrained_dofs() const
Definition: system.C:120
uint8_t dof_id_type
Definition: id_types.h:67
const FEType & type() const
Definition: variable.h:140

◆ get_last_local_training_index()

numeric_index_type libMesh::RBConstructionBase< CondensedEigenSystem >::get_last_local_training_index ( ) const
inherited

Get the last local index of the training parameters.

Definition at line 206 of file rb_construction_base.C.

207 {
208  libmesh_error_msg_if(!_training_parameters_initialized,
209  "Error: training parameters must first be initialized.");
210 
211  if (_training_parameters.empty())
212  return 0;
213 
215 }
numeric_index_type _first_local_index
The first sample-vector index from the global vector which is stored in the _training_parameters on t...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ get_local_n_training_samples()

numeric_index_type libMesh::RBConstructionBase< CondensedEigenSystem >::get_local_n_training_samples ( ) const
inherited

Get the total number of training samples local to this processor.

Definition at line 168 of file rb_construction_base.C.

Referenced by compute_SCM_bounds_on_training_set().

169 {
170  libmesh_error_msg_if(!_training_parameters_initialized,
171  "Error: training parameters must first be initialized.");
172 
173  // First we check if there are no parameters here, and in that case we
174  // return 1 for both serial and parallel training sets. This is consistent
175  // with get_n_training_samples(), and avoids accessing
176  // training_parameters.begin() when training_parameters is empty.
177  if (_training_parameters.empty())
178  return 1;
179 
181 }
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ get_matrix() [1/2]

const SparseMatrix< Number > & libMesh::System::get_matrix ( std::string_view  mat_name) const
inherited
Returns
A const reference to this system's matrix named mat_name.

Definition at line 1073 of file system.C.

References libMesh::System::_matrices.

Referenced by add_M_C_K_helmholtz(), assemble(), assemble_helmholtz(), libMesh::NewmarkSystem::compute_matrix(), libMesh::CondensedEigenSystem::get_condensed_matrix_A(), libMesh::CondensedEigenSystem::get_condensed_matrix_B(), libMesh::ImplicitSystem::get_system_matrix(), main(), libMesh::EigenTimeSolver::solve(), and libMesh::NewmarkSystem::update_rhs().

1074 {
1075  return *libmesh_map_find(_matrices, mat_name);
1076 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ get_matrix() [2/2]

SparseMatrix< Number > & libMesh::System::get_matrix ( std::string_view  mat_name)
inherited
Returns
A writable reference to this system's matrix named mat_name.

Definition at line 1080 of file system.C.

References libMesh::System::_matrices.

1081 {
1082  return *libmesh_map_find(_matrices, mat_name);
1083 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ get_matrix_A() [1/2]

const SparseMatrix< Number > & libMesh::EigenSystem::get_matrix_A ( ) const
inherited
Returns
A const reference to the system matrix used for standard eigenvalue problems.

This matrix should only be available (and therefore this should only be called) if !_use_shell_matrices.

Definition at line 311 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::has_matrix_A(), libMesh::libmesh_assert(), and libMesh::EigenSystem::matrix_A.

Referenced by add_scaled_symm_Aq(), assemble_mass(), assemble_matrices(), and assemble_SchroedingerEquation().

312 {
316  return *matrix_A;
317 }
bool has_matrix_A() const
Definition: eigen_system.C:421
libmesh_assert(ctx)
SparseMatrix< Number > * matrix_A
The system matrix for standard eigenvalue problems.
Definition: eigen_system.h:313
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_matrix_A() [2/2]

SparseMatrix< Number > & libMesh::EigenSystem::get_matrix_A ( )
inherited
Returns
A reference to the system matrix used for standard eigenvalue problems.

This matrix should only be available (and therefore this should only be called) if !_use_shell_matrices.

Definition at line 320 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::has_matrix_A(), libMesh::libmesh_assert(), and libMesh::EigenSystem::matrix_A.

321 {
325  return *matrix_A;
326 }
bool has_matrix_A() const
Definition: eigen_system.C:421
libmesh_assert(ctx)
SparseMatrix< Number > * matrix_A
The system matrix for standard eigenvalue problems.
Definition: eigen_system.h:313
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_matrix_B() [1/2]

const SparseMatrix< Number > & libMesh::EigenSystem::get_matrix_B ( ) const
inherited
Returns
A const reference to the system matrix used for generalized eigenvalue problems

This matrix should only be available (and therefore this should only be called) if !_use_shell_matrices and generalized().

Definition at line 329 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::generalized(), libMesh::EigenSystem::has_matrix_B(), libMesh::libmesh_assert(), and libMesh::EigenSystem::matrix_B.

Referenced by assemble_mass(), assemble_matrices(), and assemble_SchroedingerEquation().

330 {
335  return *matrix_B;
336 }
bool generalized() const
Definition: eigen_system.C:303
SparseMatrix< Number > * matrix_B
A second system matrix for generalized eigenvalue problems.
Definition: eigen_system.h:321
bool has_matrix_B() const
Definition: eigen_system.C:428
libmesh_assert(ctx)
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_matrix_B() [2/2]

SparseMatrix< Number > & libMesh::EigenSystem::get_matrix_B ( )
inherited
Returns
A const reference to the system matrix used for generalized eigenvalue problems

This matrix should only be available (and therefore this should only be called) if !_use_shell_matrices and generalized().

Definition at line 339 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::generalized(), libMesh::EigenSystem::has_matrix_B(), libMesh::libmesh_assert(), and libMesh::EigenSystem::matrix_B.

340 {
345  return *matrix_B;
346 }
bool generalized() const
Definition: eigen_system.C:303
SparseMatrix< Number > * matrix_B
A second system matrix for generalized eigenvalue problems.
Definition: eigen_system.h:321
bool has_matrix_B() const
Definition: eigen_system.C:428
libmesh_assert(ctx)
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_mesh() [1/2]

const MeshBase & libMesh::System::get_mesh ( ) const
inlineinherited
Returns
A constant reference to this systems's _mesh.

Definition at line 2277 of file system.h.

References libMesh::System::_mesh.

Referenced by libMesh::ExactSolution::_compute_error(), LinearElasticityWithContact::add_contact_edge_elements(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::HPCoarsenTest::add_projection(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), AssembleOptimization::assemble_A_and_F(), libMesh::FEMSystem::assemble_qoi(), libMesh::FEMSystem::assemble_qoi_derivative(), libMesh::FEMSystem::assembly(), AssemblyA0::boundary_assembly(), AssemblyA1::boundary_assembly(), AssemblyF0::boundary_assembly(), AssemblyF1::boundary_assembly(), AssemblyA2::boundary_assembly(), AssemblyF2::boundary_assembly(), libMesh::System::calculate_norm(), compute_jacobian(), compute_residual(), LinearElasticityWithContact::compute_stresses(), libMesh::RBEIMEvaluation::distribute_bfs(), DMCreateDomainDecomposition_libMesh(), DMCreateFieldDecomposition_libMesh(), DMlibMeshSetSystem_libMesh(), SolidSystem::element_time_derivative(), HeatSystem::element_time_derivative(), libMesh::RBConstruction::enrich_basis_from_rhs_terms(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_interiors(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_sides(), libMesh::PatchRecoveryErrorEstimator::estimate_error(), libMesh::WeightedPatchRecoveryErrorEstimator::estimate_error(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubFunctor::find_dofs_to_send(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::GenericProjector(), LinearElasticityWithContact::get_least_and_max_gap_function(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::RBEIMConstruction::init_context(), SolidSystem::init_data(), libMesh::System::init_data(), libMesh::System::init_matrices(), LinearElasticityWithContact::initialize_contact_load_paths(), libMesh::RBEIMConstruction::initialize_qp_data(), libMesh::System::local_dof_indices(), libMesh::DofMap::max_constraint_error(), libMesh::FEMSystem::mesh_position_get(), libMesh::FEMSystem::mesh_position_set(), LinearElasticityWithContact::move_mesh(), libMesh::RBEIMEvaluation::node_distribute_bfs(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::petsc_auto_fieldsplit(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::FEMSystem::postprocess(), libMesh::RBParametrizedFunction::preevaluate_parametrized_function_on_mesh(), libMesh::RBParametrizedFunction::preevaluate_parametrized_function_on_mesh_sides(), libMesh::RBEIMEvaluation::project_qp_data_map_onto_system(), libMesh::System::read_header(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), libMesh::System::read_legacy_data(), libMesh::System::read_parallel_data(), libMesh::System::read_serialized_vector(), libMesh::System::read_serialized_vectors(), libMesh::System::reinit(), LinearElasticityWithContact::residual_and_jacobian(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), SolidSystem::save_initial_mesh(), libMesh::HPSingularity::select_refinement(), libMesh::HPCoarsenTest::select_refinement(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::RBEIMEvaluation::side_distribute_bfs(), SolidSystem::side_time_derivative(), libMesh::PetscDiffSolver::solve(), MeshAssignTest::testMeshMoveAssign(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), libMesh::BoundaryVolumeSolutionTransfer::transfer_volume_boundary(), libMesh::TransientRBConstruction::truth_solve(), libMesh::RBConstruction::truth_solve(), libMesh::System::write_header(), libMesh::RBEvaluation::write_out_vectors(), libMesh::System::write_parallel_data(), libMesh::System::write_serialized_vector(), libMesh::System::write_serialized_vectors(), and libMesh::System::zero_variable().

2278 {
2279  return _mesh;
2280 }
MeshBase & _mesh
Constant reference to the mesh data structure used for the simulation.
Definition: system.h:2125

◆ get_mesh() [2/2]

MeshBase & libMesh::System::get_mesh ( )
inlineinherited
Returns
A reference to this systems's _mesh.

Definition at line 2285 of file system.h.

References libMesh::System::_mesh.

2286 {
2287  return _mesh;
2288 }
MeshBase & _mesh
Constant reference to the mesh data structure used for the simulation.
Definition: system.h:2125

◆ get_n_continuous_params()

unsigned int libMesh::RBParametrized::get_n_continuous_params ( ) const
inherited

Get the number of continuous parameters.

Definition at line 112 of file rb_parametrized.C.

References libMesh::RBParametrized::get_n_discrete_params(), libMesh::RBParametrized::get_n_params(), libMesh::libmesh_assert(), and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

113 {
114  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_n_continuous_params");
115 
117 
118  return static_cast<unsigned int>(get_n_params() - get_n_discrete_params());
119 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
unsigned int get_n_discrete_params() const
Get the number of discrete parameters.
libmesh_assert(ctx)
unsigned int get_n_params() const
Get the number of parameters.

◆ get_n_converged()

unsigned int libMesh::EigenSystem::get_n_converged ( ) const
inlineinherited
Returns
The number of converged eigenpairs.

Definition at line 130 of file eigen_system.h.

References libMesh::EigenSystem::_n_converged_eigenpairs.

Referenced by compute_SCM_bounding_box(), evaluate_stability_constant(), and main().

130 {return _n_converged_eigenpairs;}
unsigned int _n_converged_eigenpairs
The number of converged eigenpairs.
Definition: eigen_system.h:397

◆ get_n_discrete_params()

unsigned int libMesh::RBParametrized::get_n_discrete_params ( ) const
inherited

Get the number of discrete parameters.

Definition at line 121 of file rb_parametrized.C.

References libMesh::RBParametrized::get_discrete_parameter_values(), and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBParametrized::get_n_continuous_params(), and libMesh::RBParametrized::write_discrete_parameter_values_to_file().

122 {
123  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_n_discrete_params");
124 
125  return cast_int<unsigned int>
127 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
const std::map< std::string, std::vector< Real > > & get_discrete_parameter_values() const
Get a const reference to the discrete parameter values.

◆ get_n_iterations()

unsigned int libMesh::EigenSystem::get_n_iterations ( ) const
inlineinherited
Returns
The number of eigen solver iterations.

Definition at line 135 of file eigen_system.h.

References libMesh::EigenSystem::_n_iterations.

135 {return _n_iterations;}
unsigned int _n_iterations
The number of iterations of the eigen solver algorithm.
Definition: eigen_system.h:402

◆ get_n_params()

unsigned int libMesh::RBParametrized::get_n_params ( ) const
inherited

Get the number of parameters.

Definition at line 103 of file rb_parametrized.C.

References libMesh::RBParameters::n_parameters(), libMesh::RBParametrized::parameters_initialized, libMesh::RBParametrized::parameters_max, and libMesh::RBParametrized::parameters_min.

Referenced by libMesh::RBParametrized::check_if_valid_params(), libMesh::RBEIMConstruction::compute_max_eim_error(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::RBParametrized::get_n_continuous_params(), print_info(), libMesh::RBEIMConstruction::print_info(), libMesh::RBConstruction::print_info(), libMesh::RBEIMEvaluation::set_eim_error_indicator_active(), and libMesh::RBConstruction::train_reduced_basis_with_POD().

104 {
105  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_n_params");
106 
107  libmesh_assert_equal_to ( parameters_min.n_parameters(), parameters_max.n_parameters() );
108 
109  return parameters_min.n_parameters();
110 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.
unsigned int n_parameters() const
Get the number of parameters that have been added.

◆ get_n_training_samples()

numeric_index_type libMesh::RBConstructionBase< CondensedEigenSystem >::get_n_training_samples ( ) const
inherited

Get the number of global training samples.

Definition at line 146 of file rb_construction_base.C.

Referenced by print_info().

147 {
148  libmesh_error_msg_if(!_training_parameters_initialized,
149  "Error: training parameters must first be initialized.");
150 
151  // First we check if there are no parameters here, and in that case we
152  // return 1 since a single training sample is sufficient to generate an
153  // RB approximation if there are no parameters. Note that in parallel,
154  // and when we don't have a serial training set, set return comm().size()
155  // so that each processor is assigned a single (empty) training sample.
156  if (_training_parameters.empty())
157  {
159  return 1;
160  else
161  return this->comm().size();
162  }
163 
165 }
const Parallel::Communicator & comm() const
processor_id_type size() const
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ get_parameter_max()

Real libMesh::RBParametrized::get_parameter_max ( const std::string &  param_name) const
inherited

Get maximum allowable value of parameter param_name.

Definition at line 183 of file rb_parametrized.C.

References libMesh::RBParameters::get_value(), libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_max.

Referenced by libMesh::RBParametrized::check_if_valid_params(), print_info(), libMesh::RBEIMConstruction::print_info(), and libMesh::RBConstruction::print_info().

184 {
185  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameter_max");
186 
187  return parameters_max.get_value(param_name);
188 }
Real get_value(const std::string &param_name) const
Get the value of the specified parameter, throw an error if it does not exist.
Definition: rb_parameters.C:64
bool parameters_initialized
Flag indicating whether the parameters have been initialized.

◆ get_parameter_min()

Real libMesh::RBParametrized::get_parameter_min ( const std::string &  param_name) const
inherited

Get minimum allowable value of parameter param_name.

Definition at line 176 of file rb_parametrized.C.

References libMesh::RBParameters::get_value(), libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_min.

Referenced by libMesh::RBParametrized::check_if_valid_params(), print_info(), libMesh::RBEIMConstruction::print_info(), and libMesh::RBConstruction::print_info().

177 {
178  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameter_min");
179 
180  return parameters_min.get_value(param_name);
181 }
Real get_value(const std::string &param_name) const
Get the value of the specified parameter, throw an error if it does not exist.
Definition: rb_parameters.C:64
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.

◆ get_parameter_names()

std::set< std::string > libMesh::RBParametrized::get_parameter_names ( ) const
inherited

Get a set that stores the parameter names.

Definition at line 129 of file rb_parametrized.C.

References libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_min.

130 {
131  libmesh_deprecated();
132  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameter_names");
133 
134  std::set<std::string> parameter_names;
135  for (const auto & pr : parameters_min)
136  parameter_names.insert(pr.first);
137 
138  return parameter_names;
139 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.

◆ get_parameters()

const RBParameters & libMesh::RBParametrized::get_parameters ( ) const
inherited

Get the current parameters.

Definition at line 155 of file rb_parametrized.C.

References libMesh::RBParametrized::parameters, and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::TransientRBConstruction::add_scaled_mass_matrix(), libMesh::TransientRBEvaluation::cache_online_residual_terms(), libMesh::RBEvaluation::compute_residual_dual_norm(), compute_SCM_bounds_on_training_set(), enrich_C_J(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_interiors(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_nodes(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_sides(), libMesh::RBEvaluation::eval_output_dual_norm(), evaluate_stability_constant(), libMesh::RBConstruction::get_RB_error_bound(), libMesh::RBSCMEvaluation::get_SCM_LB(), libMesh::RBSCMEvaluation::get_SCM_UB(), SimpleRBEvaluation::get_stability_lower_bound(), libMesh::RBConstruction::greedy_termination_test(), libMesh::RBEIMConstruction::initialize_parametrized_functions_in_training_set(), libMesh::RBSCMEvaluation::legacy_read_offline_data_from_files(), libMesh::TransientRBConstruction::mass_matrix_scaled_matvec(), libMesh::RBConstruction::preevaluate_thetas(), print_info(), libMesh::RBEIMConstruction::print_info(), libMesh::RBConstruction::print_info(), libMesh::RBParametrized::print_parameters(), process_parameters_file(), libMesh::TransientRBEvaluation::rb_solve(), libMesh::RBEvaluation::rb_solve(), libMesh::RBSCMEvaluation::save_current_parameters(), libMesh::RBEIMConstruction::train_eim_approximation_with_greedy(), libMesh::RBEIMConstruction::train_eim_approximation_with_POD(), libMesh::TransientRBConstruction::truth_assembly(), libMesh::RBConstruction::truth_assembly(), libMesh::TransientRBConstruction::truth_solve(), libMesh::RBConstruction::truth_solve(), libMesh::TransientRBEvaluation::uncached_compute_residual_dual_norm(), and libMesh::RBConstruction::update_greedy_param_list().

156 {
157  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameters");
158 
159  return parameters;
160 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters
Vector storing the current parameters.

◆ get_parameters_max()

const RBParameters & libMesh::RBParametrized::get_parameters_max ( ) const
inherited

Get an RBParameters object that specifies the maximum allowable value for each parameter.

Definition at line 169 of file rb_parametrized.C.

References libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_max.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBParametrized::initialize_parameters(), process_parameters_file(), libMesh::RBEIMConstruction::set_rb_construction_parameters(), libMesh::RBConstruction::set_rb_construction_parameters(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

170 {
171  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameters_max");
172 
173  return parameters_max;
174 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.

◆ get_parameters_min()

const RBParameters & libMesh::RBParametrized::get_parameters_min ( ) const
inherited

Get an RBParameters object that specifies the minimum allowable value for each parameter.

Definition at line 162 of file rb_parametrized.C.

References libMesh::RBParametrized::parameters_initialized, and libMesh::RBParametrized::parameters_min.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBParametrized::initialize_parameters(), process_parameters_file(), libMesh::RBEIMConstruction::set_rb_construction_parameters(), libMesh::RBConstruction::set_rb_construction_parameters(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

163 {
164  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::get_parameters_min");
165 
166  return parameters_min;
167 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.

◆ get_params_from_training_set()

RBParameters libMesh::RBConstructionBase< CondensedEigenSystem >::get_params_from_training_set ( unsigned int  global_index)
protectedinherited

Return the RBParameters in index global_index of the global training set.

Why do we use an index here? RBParameters supports loading the full sample set. This seems probably unnecessary now to load individually. Maybe it's a memory issue?

Definition at line 224 of file rb_construction_base.C.

References libMesh::as_range(), libMesh::MeshTools::Generation::Private::idx(), libMesh::index_range(), libMesh::RBParameters::set_extra_value(), and libMesh::RBParameters::set_value().

225 {
226  libmesh_error_msg_if(!_training_parameters_initialized,
227  "Error: training parameters must first be initialized.");
228 
229  // If the _training_parameters are empty, return an empty RBParameters.
230  // Otherwise, create a new RBParameters object from the single sample requested.
231  RBParameters params;
232  if (!_training_parameters.empty())
233  {
234  libmesh_error_msg_if((global_index < this->get_first_local_training_index()) ||
235  (global_index >= this->get_last_local_training_index()),
236  "Error: index "
237  << global_index
238  << " must be within range: "
240  << " - "
241  << this->get_last_local_training_index());
242 
243  const numeric_index_type local_index = global_index - get_first_local_training_index();
244  for (const auto & [param_name, sample_vector] : _training_parameters)
245  params.set_value(param_name, sample_vector[local_index]);
246 
247  // Copy all extra values into the new RBParameters.
248  // We assume that the samples may be indexed differently for extra parameters,
249  // so we don't just copy the local_index value.
250  const auto & mine = get_parameters();
251  for (const auto & [key, extra_sample_vector] :
252  as_range(mine.extra_begin(), mine.extra_end()))
253  {
254  for (const auto idx : index_range(extra_sample_vector))
255  params.set_extra_value(key, idx, extra_sample_vector[idx]);
256  }
257  }
258 
259  return params;
260 }
numeric_index_type get_first_local_training_index() const
Get the first local index of the training parameters.
dof_id_type numeric_index_type
Definition: id_types.h:99
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
Helper function that allows us to treat a homogenous pair as a range.
Definition: simple_range.h:57
numeric_index_type get_last_local_training_index() const
Get the last local index of the training parameters.
const RBParameters & get_parameters() const
Get the current parameters.
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
auto index_range(const T &sizable)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:111
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.
unsigned int idx(const ElemType type, const unsigned int nx, const unsigned int i, const unsigned int j)
A useful inline function which replaces the macros used previously.

◆ get_precond_matrix() [1/2]

const SparseMatrix< Number > & libMesh::EigenSystem::get_precond_matrix ( ) const
inherited
Returns
A const reference to the preconditioning matrix.

This matrix should only be available (and therefore this should only be called) if !_use_shell_matrices.

Definition at line 349 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::_use_shell_precond_matrix, libMesh::EigenSystem::has_precond_matrix(), libMesh::libmesh_assert(), and libMesh::EigenSystem::precond_matrix.

350 {
355  return *precond_matrix;
356 }
SparseMatrix< Number > * precond_matrix
A preconditioning matrix.
Definition: eigen_system.h:345
bool has_precond_matrix() const
Definition: eigen_system.C:435
bool _use_shell_precond_matrix
A boolean flag to indicate whether or not to use a shell preconditioning matrix.
Definition: eigen_system.h:417
libmesh_assert(ctx)
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_precond_matrix() [2/2]

SparseMatrix< Number > & libMesh::EigenSystem::get_precond_matrix ( )
inherited
Returns
A reference to the preconditioning matrix.

This matrix should only be available (and therefore this should only be called) if !_use_shell_matrices.

Definition at line 359 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::_use_shell_precond_matrix, libMesh::EigenSystem::has_precond_matrix(), libMesh::libmesh_assert(), and libMesh::EigenSystem::precond_matrix.

360 {
365  return *precond_matrix;
366 }
SparseMatrix< Number > * precond_matrix
A preconditioning matrix.
Definition: eigen_system.h:345
bool has_precond_matrix() const
Definition: eigen_system.C:435
bool _use_shell_precond_matrix
A boolean flag to indicate whether or not to use a shell preconditioning matrix.
Definition: eigen_system.h:417
libmesh_assert(ctx)
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_project_with_constraints()

bool libMesh::System::get_project_with_constraints ( )
inlineinherited

Setter and getter functions for project_with_constraints boolean.

Definition at line 1775 of file system.h.

References libMesh::System::project_with_constraints.

Referenced by libMesh::AdjointRefinementEstimator::estimate_error().

1776  {
1777  return project_with_constraints;
1778  }
bool project_with_constraints
Do we want to apply constraints while projecting vectors ?
Definition: system.h:2253

◆ get_qoi_error_estimate_value()

Number libMesh::System::get_qoi_error_estimate_value ( unsigned int  qoi_index) const
inherited

Definition at line 2361 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::qoi_error_estimates.

Referenced by libMesh::TwostepTimeSolver::integrate_adjoint_refinement_error_estimate(), and main().

2362 {
2363  libmesh_assert(qoi_index < qoi_error_estimates.size());
2364  return qoi_error_estimates[qoi_index];
2365 }
libmesh_assert(ctx)
std::vector< Number > qoi_error_estimates
Vector to hold error estimates for qois, either from a steady state calculation, or from a single uns...
Definition: system.h:1619

◆ get_qoi_value()

Number libMesh::System::get_qoi_value ( unsigned int  qoi_index) const
inherited

◆ get_qoi_values()

std::vector< Number > libMesh::System::get_qoi_values ( ) const
inherited

Returns a copy of qoi, not a reference.

Definition at line 2341 of file system.C.

References libMesh::System::qoi.

Referenced by libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), libMesh::FEMSystem::assemble_qoi(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::ImplicitSystem::qoi_parameter_hessian(), and libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product().

2342 {
2343  return this->qoi;
2344 }
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611

◆ get_rb_scm_evaluation()

RBSCMEvaluation & libMesh::RBSCMConstruction::get_rb_scm_evaluation ( )

Get a reference to the RBSCMEvaluation object.

Definition at line 77 of file rb_scm_construction.C.

References rb_scm_eval.

Referenced by get_rb_theta_expansion().

78 {
79  libmesh_error_msg_if(!rb_scm_eval, "Error: RBSCMEvaluation object hasn't been initialized yet");
80 
81  return *rb_scm_eval;
82 }
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...

◆ get_rb_theta_expansion()

RBThetaExpansion & libMesh::RBSCMConstruction::get_rb_theta_expansion ( )

Get a reference to the RBThetaExpansion object.

Definition at line 84 of file rb_scm_construction.C.

References get_rb_scm_evaluation(), and libMesh::RBSCMEvaluation::get_rb_theta_expansion().

Referenced by Aq_inner_product(), compute_SCM_bounding_box(), enrich_C_J(), evaluate_stability_constant(), print_info(), and resize_SCM_vectors().

85 {
87 }
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the rb_theta_expansion.
RBSCMEvaluation & get_rb_scm_evaluation()
Get a reference to the RBSCMEvaluation object.

◆ get_SCM_training_tolerance()

Real libMesh::RBSCMConstruction::get_SCM_training_tolerance ( ) const
inline

Get/set SCM_training_tolerance: tolerance for SCM greedy.

Definition at line 145 of file rb_scm_construction.h.

References SCM_training_tolerance.

Referenced by print_info().

145 { return SCM_training_tolerance; }
Real SCM_training_tolerance
Tolerance which controls when to terminate the SCM Greedy.

◆ get_sensitivity_rhs() [1/2]

NumericVector< Number > & libMesh::System::get_sensitivity_rhs ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's sensitivity rhs vectors, by default the one corresponding to the first parameter. By default these vectors are built by the library, using finite differences, when assemble_residual_derivatives() is called.

When assembled, this vector should hold -(partial R / partial p_i)

Definition at line 1285 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), and libMesh::ImplicitSystem::sensitivity_solve().

1286 {
1287  std::ostringstream sensitivity_rhs_name;
1288  sensitivity_rhs_name << "sensitivity_rhs" << i;
1289 
1290  return this->get_vector(sensitivity_rhs_name.str());
1291 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_sensitivity_rhs() [2/2]

const NumericVector< Number > & libMesh::System::get_sensitivity_rhs ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's sensitivity rhs vectors, by default the one corresponding to the first parameter.

Definition at line 1295 of file system.C.

References libMesh::System::get_vector().

1296 {
1297  std::ostringstream sensitivity_rhs_name;
1298  sensitivity_rhs_name << "sensitivity_rhs" << i;
1299 
1300  return this->get_vector(sensitivity_rhs_name.str());
1301 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_sensitivity_solution() [1/2]

NumericVector< Number > & libMesh::System::get_sensitivity_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's solution sensitivity vectors, by default the one corresponding to the first parameter.

Definition at line 1140 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::ImplicitSystem::qoi_parameter_hessian(), and libMesh::ImplicitSystem::sensitivity_solve().

1141 {
1142  std::ostringstream sensitivity_name;
1143  sensitivity_name << "sensitivity_solution" << i;
1144 
1145  return this->get_vector(sensitivity_name.str());
1146 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_sensitivity_solution() [2/2]

const NumericVector< Number > & libMesh::System::get_sensitivity_solution ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's solution sensitivity vectors, by default the one corresponding to the first parameter.

Definition at line 1150 of file system.C.

References libMesh::System::get_vector().

1151 {
1152  std::ostringstream sensitivity_name;
1153  sensitivity_name << "sensitivity_solution" << i;
1154 
1155  return this->get_vector(sensitivity_name.str());
1156 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_shell_matrix_A() [1/2]

const ShellMatrix< Number > & libMesh::EigenSystem::get_shell_matrix_A ( ) const
inherited
Returns
A const reference to the system shell matrix used for standard eigenvalue problems.

This matrix should only be available (and therefore this should only be called) if _use_shell_matrices.

Definition at line 369 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::has_shell_matrix_A(), libMesh::libmesh_assert(), and libMesh::EigenSystem::shell_matrix_A.

370 {
373  return *shell_matrix_A;
374 }
bool has_shell_matrix_A() const
Definition: eigen_system.C:442
std::unique_ptr< ShellMatrix< Number > > shell_matrix_A
The system shell matrix for standard eigenvalue problems.
Definition: eigen_system.h:329
libmesh_assert(ctx)
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_shell_matrix_A() [2/2]

ShellMatrix< Number > & libMesh::EigenSystem::get_shell_matrix_A ( )
inherited
Returns
A reference to the system shell matrix used for standard eigenvalue problems.

This matrix should only be available (and therefore this should only be called) if _use_shell_matrices.

Definition at line 377 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::has_shell_matrix_A(), libMesh::libmesh_assert(), and libMesh::EigenSystem::shell_matrix_A.

378 {
381  return *shell_matrix_A;
382 }
bool has_shell_matrix_A() const
Definition: eigen_system.C:442
std::unique_ptr< ShellMatrix< Number > > shell_matrix_A
The system shell matrix for standard eigenvalue problems.
Definition: eigen_system.h:329
libmesh_assert(ctx)
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_shell_matrix_B() [1/2]

const ShellMatrix< Number > & libMesh::EigenSystem::get_shell_matrix_B ( ) const
inherited
Returns
A const reference to the system shell matrix used for generalized eigenvalue problems.

This matrix should only be available (and therefore this should only be called) if _use_shell_matrices and generalized().

Definition at line 385 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::generalized(), libMesh::EigenSystem::has_shell_matrix_B(), libMesh::libmesh_assert(), and libMesh::EigenSystem::shell_matrix_B.

386 {
390  return *shell_matrix_B;
391 }
bool generalized() const
Definition: eigen_system.C:303
std::unique_ptr< ShellMatrix< Number > > shell_matrix_B
A second system shell matrix for generalized eigenvalue problems.
Definition: eigen_system.h:337
libmesh_assert(ctx)
bool has_shell_matrix_B() const
Definition: eigen_system.C:448
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_shell_matrix_B() [2/2]

ShellMatrix< Number > & libMesh::EigenSystem::get_shell_matrix_B ( )
inherited
Returns
A reference to the system shell matrix used for generalized eigenvalue problems.

This matrix should only be available (and therefore this should only be called) if _use_shell_matrices and generalized().

Definition at line 394 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::generalized(), libMesh::EigenSystem::has_shell_matrix_B(), libMesh::libmesh_assert(), and libMesh::EigenSystem::shell_matrix_B.

395 {
399  return *shell_matrix_B;
400 }
bool generalized() const
Definition: eigen_system.C:303
std::unique_ptr< ShellMatrix< Number > > shell_matrix_B
A second system shell matrix for generalized eigenvalue problems.
Definition: eigen_system.h:337
libmesh_assert(ctx)
bool has_shell_matrix_B() const
Definition: eigen_system.C:448
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_shell_precond_matrix() [1/2]

const ShellMatrix< Number > & libMesh::EigenSystem::get_shell_precond_matrix ( ) const
inherited
Returns
A const reference to the system shell matrix used for preconditioning.

Definition at line 403 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::_use_shell_precond_matrix, libMesh::EigenSystem::has_shell_precond_matrix(), libMesh::libmesh_assert(), and libMesh::EigenSystem::shell_precond_matrix.

404 {
408  return *shell_precond_matrix;
409 }
std::unique_ptr< ShellMatrix< Number > > shell_precond_matrix
A preconditioning shell matrix.
Definition: eigen_system.h:353
bool _use_shell_precond_matrix
A boolean flag to indicate whether or not to use a shell preconditioning matrix.
Definition: eigen_system.h:417
libmesh_assert(ctx)
bool has_shell_precond_matrix() const
Definition: eigen_system.C:454
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_shell_precond_matrix() [2/2]

ShellMatrix< Number > & libMesh::EigenSystem::get_shell_precond_matrix ( )
inherited
Returns
A reference to the system shell matrix used for preconditioning.

Definition at line 412 of file eigen_system.C.

References libMesh::EigenSystem::_use_shell_matrices, libMesh::EigenSystem::_use_shell_precond_matrix, libMesh::EigenSystem::has_shell_precond_matrix(), libMesh::libmesh_assert(), and libMesh::EigenSystem::shell_precond_matrix.

413 {
417  return *shell_precond_matrix;
418 }
std::unique_ptr< ShellMatrix< Number > > shell_precond_matrix
A preconditioning shell matrix.
Definition: eigen_system.h:353
bool _use_shell_precond_matrix
A boolean flag to indicate whether or not to use a shell preconditioning matrix.
Definition: eigen_system.h:417
libmesh_assert(ctx)
bool has_shell_precond_matrix() const
Definition: eigen_system.C:454
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ get_vector() [1/4]

const NumericVector< Number > & libMesh::System::get_vector ( std::string_view  vec_name) const
inherited
Returns
A const reference to this system's additional vector named vec_name. Access is only granted when the vector is already properly initialized.

Definition at line 918 of file system.C.

References libMesh::System::_vectors.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), add_M_C_K_helmholtz(), libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::NewmarkSolver::advance_timestep(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), apply_initial(), assemble(), libMesh::System::compare(), libMesh::NewmarkSolver::compute_initial_accel(), libMesh::UnsteadySolver::du(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::System::get_adjoint_rhs(), libMesh::System::get_adjoint_solution(), libMesh::System::get_sensitivity_rhs(), libMesh::System::get_sensitivity_solution(), libMesh::System::get_weighted_sensitivity_adjoint_solution(), libMesh::System::get_weighted_sensitivity_solution(), libMesh::NewmarkSystem::initial_conditions(), AssembleOptimization::lower_and_upper_bounds(), main(), libMesh::NewmarkSolver::project_initial_accel(), libMesh::SecondOrderUnsteadySolver::project_initial_rate(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::FileSolutionHistory::retrieve(), libMesh::UnsteadySolver::retrieve_timestep(), libMesh::MemoryHistoryData::retrieve_vectors(), libMesh::TwostepTimeSolver::solve(), libMesh::FrequencySystem::solve(), libMesh::UnsteadySolver::update(), libMesh::NewmarkSystem::update_rhs(), and libMesh::NewmarkSystem::update_u_v_a().

919 {
920  return *(libmesh_map_find(_vectors, vec_name));
921 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ get_vector() [2/4]

NumericVector< Number > & libMesh::System::get_vector ( std::string_view  vec_name)
inherited
Returns
A writable reference to this system's additional vector named vec_name. Access is only granted when the vector is already properly initialized.

Definition at line 925 of file system.C.

References libMesh::System::_vectors.

926 {
927  return *(libmesh_map_find(_vectors, vec_name));
928 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ get_vector() [3/4]

const NumericVector< Number > & libMesh::System::get_vector ( const unsigned int  vec_num) const
inherited
Returns
A const reference to this system's additional vector number vec_num (where the vectors are counted starting with 0).

Definition at line 932 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

933 {
934  // If we don't have that many vectors, throw an error
935  libmesh_assert_less(vec_num, _vectors.size());
936 
937  // Otherwise return a reference to the vec_num'th vector
938  auto it = vectors_begin();
939  std::advance(it, vec_num);
940  return *(it->second);
941 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ get_vector() [4/4]

NumericVector< Number > & libMesh::System::get_vector ( const unsigned int  vec_num)
inherited
Returns
A writable reference to this system's additional vector number vec_num (where the vectors are counted starting with 0).

Definition at line 945 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

946 {
947  // If we don't have that many vectors, throw an error
948  libmesh_assert_less(vec_num, _vectors.size());
949 
950  // Otherwise return a reference to the vec_num'th vector
951  auto it = vectors_begin();
952  std::advance(it, vec_num);
953  return *(it->second);
954 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ get_weighted_sensitivity_adjoint_solution() [1/2]

NumericVector< Number > & libMesh::System::get_weighted_sensitivity_adjoint_solution ( unsigned int  i = 0)
inherited
Returns
A reference to one of the system's weighted sensitivity adjoint solution vectors, by default the one corresponding to the first qoi.

Definition at line 1225 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), and libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve().

1226 {
1227  std::ostringstream adjoint_name;
1228  adjoint_name << "weighted_sensitivity_adjoint_solution" << i;
1229 
1230  return this->get_vector(adjoint_name.str());
1231 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_weighted_sensitivity_adjoint_solution() [2/2]

const NumericVector< Number > & libMesh::System::get_weighted_sensitivity_adjoint_solution ( unsigned int  i = 0) const
inherited
Returns
A reference to one of the system's weighted sensitivity adjoint solution vectors, by default the one corresponding to the first qoi.

Definition at line 1235 of file system.C.

References libMesh::System::get_vector().

1236 {
1237  std::ostringstream adjoint_name;
1238  adjoint_name << "weighted_sensitivity_adjoint_solution" << i;
1239 
1240  return this->get_vector(adjoint_name.str());
1241 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_weighted_sensitivity_solution() [1/2]

NumericVector< Number > & libMesh::System::get_weighted_sensitivity_solution ( )
inherited
Returns
A reference to the solution of the last weighted sensitivity solve

Definition at line 1167 of file system.C.

References libMesh::System::get_vector().

Referenced by libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), and libMesh::ImplicitSystem::weighted_sensitivity_solve().

1168 {
1169  return this->get_vector("weighted_sensitivity_solution");
1170 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ get_weighted_sensitivity_solution() [2/2]

const NumericVector< Number > & libMesh::System::get_weighted_sensitivity_solution ( ) const
inherited
Returns
A reference to the solution of the last weighted sensitivity solve

Definition at line 1174 of file system.C.

References libMesh::System::get_vector().

1175 {
1176  return this->get_vector("weighted_sensitivity_solution");
1177 }
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:918

◆ has_constraint_object()

bool libMesh::System::has_constraint_object ( ) const
inherited
Returns
true if there is a user-defined constraint object attached to this object, false otherwise. Calling System:: get_constraint_object() when there is no user-defined constraint object attached leads to either undefined behavior (dereferencing a nullptr) or an assert (in dbg mode) so you should call this function first unless you are sure there is a user-defined constraint object attached.

Definition at line 2169 of file system.C.

References libMesh::System::_constrain_system_object.

2170 {
2171  return _constrain_system_object != nullptr;
2172 }
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081

◆ has_matrix_A()

bool libMesh::EigenSystem::has_matrix_A ( ) const
inherited
Returns
Whether or not the system has matrix A

Definition at line 421 of file eigen_system.C.

References libMesh::EigenSystem::matrix_A, and libMesh::System::request_matrix().

Referenced by libMesh::EigenSystem::get_matrix_A().

422 {
423  libmesh_assert_equal_to(request_matrix("Eigen Matrix A"), matrix_A);
424  return matrix_A;
425 }
const SparseMatrix< Number > * request_matrix(std::string_view mat_name) const
Definition: system.C:1047
SparseMatrix< Number > * matrix_A
The system matrix for standard eigenvalue problems.
Definition: eigen_system.h:313

◆ has_matrix_B()

bool libMesh::EigenSystem::has_matrix_B ( ) const
inherited
Returns
Whether or not the system has matrix B

Definition at line 428 of file eigen_system.C.

References libMesh::EigenSystem::matrix_B, and libMesh::System::request_matrix().

Referenced by libMesh::EigenSystem::get_matrix_B().

429 {
430  libmesh_assert_equal_to(request_matrix("Eigen Matrix B"), matrix_B);
431  return matrix_B;
432 }
SparseMatrix< Number > * matrix_B
A second system matrix for generalized eigenvalue problems.
Definition: eigen_system.h:321
const SparseMatrix< Number > * request_matrix(std::string_view mat_name) const
Definition: system.C:1047

◆ has_precond_matrix()

bool libMesh::EigenSystem::has_precond_matrix ( ) const
inherited
Returns
Whether or not the system has the non-shell preconditioning matrix

Definition at line 435 of file eigen_system.C.

References libMesh::EigenSystem::precond_matrix, and libMesh::System::request_matrix().

Referenced by libMesh::EigenSystem::get_precond_matrix().

436 {
437  libmesh_assert_equal_to(request_matrix("Eigen Preconditioner"), precond_matrix);
438  return precond_matrix;
439 }
const SparseMatrix< Number > * request_matrix(std::string_view mat_name) const
Definition: system.C:1047
SparseMatrix< Number > * precond_matrix
A preconditioning matrix.
Definition: eigen_system.h:345

◆ has_shell_matrix_A()

bool libMesh::EigenSystem::has_shell_matrix_A ( ) const
inherited
Returns
Whether or not the system has the shell matrix A

Definition at line 442 of file eigen_system.C.

References libMesh::EigenSystem::shell_matrix_A.

Referenced by libMesh::EigenSystem::get_shell_matrix_A().

443 {
444  return shell_matrix_A.get();
445 }
std::unique_ptr< ShellMatrix< Number > > shell_matrix_A
The system shell matrix for standard eigenvalue problems.
Definition: eigen_system.h:329

◆ has_shell_matrix_B()

bool libMesh::EigenSystem::has_shell_matrix_B ( ) const
inherited
Returns
Whether or not the system has the shell matrix B

Definition at line 448 of file eigen_system.C.

References libMesh::EigenSystem::shell_matrix_B.

Referenced by libMesh::EigenSystem::get_shell_matrix_B().

449 {
450  return shell_matrix_B.get();
451 }
std::unique_ptr< ShellMatrix< Number > > shell_matrix_B
A second system shell matrix for generalized eigenvalue problems.
Definition: eigen_system.h:337

◆ has_shell_precond_matrix()

bool libMesh::EigenSystem::has_shell_precond_matrix ( ) const
inherited
Returns
Whether or not the system has the shell preconditioning matrix

Definition at line 454 of file eigen_system.C.

References libMesh::EigenSystem::shell_precond_matrix.

Referenced by libMesh::EigenSystem::get_shell_precond_matrix().

455 {
456  return shell_precond_matrix.get();
457 }
std::unique_ptr< ShellMatrix< Number > > shell_precond_matrix
A preconditioning shell matrix.
Definition: eigen_system.h:353

◆ has_variable()

bool libMesh::System::has_variable ( std::string_view  var) const
inherited
Returns
true if a variable named var exists in this System

Definition at line 1550 of file system.C.

References libMesh::System::_variable_numbers.

Referenced by libMesh::GMVIO::copy_nodal_solution(), and main().

1551 {
1552  return _variable_numbers.count(var);
1553 }
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151

◆ have_matrix()

bool libMesh::System::have_matrix ( std::string_view  mat_name) const
inlineinherited
Returns
true if this System has a matrix associated with the given name, false otherwise.

Definition at line 1860 of file system.h.

References libMesh::System::_matrices.

Referenced by libMesh::EigenTimeSolver::init().

1860 { return _matrices.count(mat_name); };
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ have_vector()

bool libMesh::System::have_vector ( std::string_view  vec_name) const
inlineinherited
Returns
true if this System has a vector associated with the given name, false otherwise.

Definition at line 2469 of file system.h.

References libMesh::System::_vectors.

2470 {
2471  return (_vectors.count(vec_name));
2472 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ hide_output()

bool& libMesh::System::hide_output ( )
inlineinherited
Returns
A writable reference to a boolean that determines if this system can be written to file or not. If set to true, then EquationSystems::write will ignore this system.

Definition at line 1790 of file system.h.

References libMesh::System::_hide_output.

1790 { return _hide_output; }
bool _hide_output
Are we allowed to write this system to file? If _hide_output is true, then EquationSystems::write wil...
Definition: system.h:2248

◆ identify_variable_groups() [1/2]

bool libMesh::System::identify_variable_groups ( ) const
inlineinherited
Returns
true when VariableGroup structures should be automatically identified, false otherwise.

Definition at line 2445 of file system.h.

References libMesh::System::_identify_variable_groups.

Referenced by libMesh::System::add_variable(), and libMesh::System::add_variables().

2446 {
2448 }
bool _identify_variable_groups
true when VariableGroup structures should be automatically identified, false otherwise.
Definition: system.h:2216

◆ identify_variable_groups() [2/2]

void libMesh::System::identify_variable_groups ( const bool  ivg)
inlineinherited

Toggle automatic VariableGroup identification.

Definition at line 2453 of file system.h.

References libMesh::System::_identify_variable_groups.

2454 {
2456 }
bool _identify_variable_groups
true when VariableGroup structures should be automatically identified, false otherwise.
Definition: system.h:2216

◆ increment_constructor_count() [1/2]

void libMesh::ReferenceCounter::increment_constructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the construction counter.

Should be called in the constructor of any derived class that will be reference counted.

Definition at line 183 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().

184 {
185  libmesh_try
186  {
187  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
188  std::pair<unsigned int, unsigned int> & p = _counts[name];
189  p.first++;
190  }
191  libmesh_catch (...)
192  {
193  auto stream = libMesh::err.get();
194  stream->exceptions(stream->goodbit); // stream must not throw
195  libMesh::err << "Encountered unrecoverable error while calling "
196  << "ReferenceCounter::increment_constructor_count() "
197  << "for a(n) " << name << " object." << std::endl;
198  std::terminate();
199  }
200 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ increment_constructor_count() [2/2]

void libMesh::ReferenceCounter::increment_constructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the construction counter.

Should be called in the constructor of any derived class that will be reference counted.

Definition at line 183 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().

184 {
185  libmesh_try
186  {
187  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
188  std::pair<unsigned int, unsigned int> & p = _counts[name];
189  p.first++;
190  }
191  libmesh_catch (...)
192  {
193  auto stream = libMesh::err.get();
194  stream->exceptions(stream->goodbit); // stream must not throw
195  libMesh::err << "Encountered unrecoverable error while calling "
196  << "ReferenceCounter::increment_constructor_count() "
197  << "for a(n) " << name << " object." << std::endl;
198  std::terminate();
199  }
200 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ increment_destructor_count() [1/2]

void libMesh::ReferenceCounter::increment_destructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the destruction counter.

Should be called in the destructor of any derived class that will be reference counted.

Definition at line 207 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().

208 {
209  libmesh_try
210  {
211  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
212  std::pair<unsigned int, unsigned int> & p = _counts[name];
213  p.second++;
214  }
215  libmesh_catch (...)
216  {
217  auto stream = libMesh::err.get();
218  stream->exceptions(stream->goodbit); // stream must not throw
219  libMesh::err << "Encountered unrecoverable error while calling "
220  << "ReferenceCounter::increment_destructor_count() "
221  << "for a(n) " << name << " object." << std::endl;
222  std::terminate();
223  }
224 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ increment_destructor_count() [2/2]

void libMesh::ReferenceCounter::increment_destructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the destruction counter.

Should be called in the destructor of any derived class that will be reference counted.

Definition at line 207 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().

208 {
209  libmesh_try
210  {
211  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
212  std::pair<unsigned int, unsigned int> & p = _counts[name];
213  p.second++;
214  }
215  libmesh_catch (...)
216  {
217  auto stream = libMesh::err.get();
218  stream->exceptions(stream->goodbit); // stream must not throw
219  libMesh::err << "Encountered unrecoverable error while calling "
220  << "ReferenceCounter::increment_destructor_count() "
221  << "for a(n) " << name << " object." << std::endl;
222  std::terminate();
223  }
224 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ init()

void libMesh::System::init ( )
inherited

Initializes degrees of freedom on the current mesh.

Sets the

Definition at line 189 of file system.C.

References libMesh::System::_basic_system_only, libMesh::System::init_data(), libMesh::System::is_initialized(), libMesh::libmesh_assert(), libMesh::System::n_vars(), and libMesh::System::user_initialization().

190 {
191  parallel_object_only();
192 
193  // Calling init() twice on the same system currently works evil
194  // magic, whether done directly or via EquationSystems::read()
195  libmesh_assert(!this->is_initialized());
196 
197  // First initialize any required data:
198  // either only the basic System data
199  if (_basic_system_only)
201  // or all the derived class' data too
202  else
203  this->init_data();
204 
205  // If no variables have been added to this system
206  // don't do anything
207  if (!this->n_vars())
208  return;
209 
210  // Then call the user-provided initialization function
211  this->user_initialization();
212 }
bool _basic_system_only
Holds true if the components of more advanced system types (e.g.
Definition: system.h:2204
virtual void init_data()
Initializes the data for the system.
Definition: system.C:216
virtual void user_initialization()
Calls user&#39;s attached initialization function, or is overridden by the user in derived classes...
Definition: system.C:2245
bool is_initialized()
Definition: system.h:2333
libmesh_assert(ctx)
unsigned int n_vars() const
Definition: system.h:2349

◆ init_data()

void libMesh::RBConstructionBase< CondensedEigenSystem >::init_data ( )
protectedvirtualinherited

Initializes the member data fields associated with the system, so that, e.g., assemble() may be used.

Reimplemented from libMesh::System.

Definition at line 122 of file rb_construction_base.C.

References libMesh::PARALLEL.

123 {
124  Base::init_data();
125 
126  // Initialize the inner product storage vector, which is useful for
127  // storing intermediate results when evaluating inner products
129  inner_product_storage_vector->init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
130 }
const Parallel::Communicator & comm() const
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary me...
static std::unique_ptr< NumericVector< Number > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...

◆ init_matrices()

void libMesh::EigenSystem::init_matrices ( )
overrideprotectedvirtualinherited

Initializes the matrices associated with the system.

Reimplemented from libMesh::System.

Definition at line 158 of file eigen_system.C.

References libMesh::System::get_dof_map(), libMesh::System::init_matrices(), libMesh::EigenSystem::shell_matrix_A, libMesh::EigenSystem::shell_matrix_B, and libMesh::EigenSystem::shell_precond_matrix.

159 {
161 
162  if (shell_matrix_A)
163  {
164  shell_matrix_A->attach_dof_map(this->get_dof_map());
165  shell_matrix_A->init();
166  }
167 
168  if (shell_matrix_B)
169  {
170  shell_matrix_B->attach_dof_map(this->get_dof_map());
171  shell_matrix_B->init();
172  }
173 
175  {
176  shell_precond_matrix->attach_dof_map(this->get_dof_map());
177  shell_precond_matrix->init();
178  }
179 }
virtual void init_matrices()
Initializes the matrices associated with this system.
Definition: system.C:326
std::unique_ptr< ShellMatrix< Number > > shell_precond_matrix
A preconditioning shell matrix.
Definition: eigen_system.h:353
std::unique_ptr< ShellMatrix< Number > > shell_matrix_A
The system shell matrix for standard eigenvalue problems.
Definition: eigen_system.h:329
std::unique_ptr< ShellMatrix< Number > > shell_matrix_B
A second system shell matrix for generalized eigenvalue problems.
Definition: eigen_system.h:337
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ init_qois()

void libMesh::System::init_qois ( unsigned int  n_qois)
inherited

Accessors for qoi and qoi_error_estimates vectors.

Definition at line 2319 of file system.C.

References libMesh::System::n_qois(), libMesh::System::qoi, and libMesh::System::qoi_error_estimates.

Referenced by CoupledSystemQoI::init_qoi_count(), LaplaceQoI::init_qoi_count(), and main().

2320 {
2321  qoi.resize(n_qois);
2322  qoi_error_estimates.resize(n_qois);
2323 }
unsigned int n_qois() const
Number of currently active quantities of interest.
Definition: system.h:2516
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611
std::vector< Number > qoi_error_estimates
Vector to hold error estimates for qois, either from a steady state calculation, or from a single uns...
Definition: system.h:1619

◆ initialize_condensed_dofs()

void libMesh::CondensedEigenSystem::initialize_condensed_dofs ( const std::set< dof_id_type > &  global_condensed_dofs_set = std::set<dof_id_type>())
inherited

Loop over the dofs on each processor to initialize the list of non-condensed dofs.

These are the dofs in the system that are not contained in global_dirichlet_dofs_set and are not subject to constraints due to adaptive mesh hanging nodes, periodic boundary conditions, or Dirichlet boundary conditions.

Most users will not need to use the global_condensed_dofs_set argument; simply call initialize_condensed_dofs() after any time the EquationSystems (and therefore its constraint equations) gets initialized or reinitialized.

Definition at line 49 of file condensed_eigen_system.C.

References libMesh::CondensedEigenSystem::condensed_dofs_initialized, libMesh::DofMap::end_dof(), libMesh::DofMap::first_dof(), libMesh::System::get_dof_map(), libMesh::DofMap::is_constrained_dof(), libMesh::CondensedEigenSystem::local_non_condensed_dofs_vector, and libMesh::make_range().

Referenced by main(), and perform_SCM_greedy().

50 {
51  const DofMap & dof_map = this->get_dof_map();
52 
53  // First, put all unconstrained local dofs into non_dirichlet_dofs_set
54  std::set<dof_id_type> local_non_condensed_dofs_set;
55  for (auto i : make_range(dof_map.first_dof(), dof_map.end_dof()))
56 #if LIBMESH_ENABLE_CONSTRAINTS
57  if (!dof_map.is_constrained_dof(i))
58 #endif
59  local_non_condensed_dofs_set.insert(i);
60 
61  // Now erase the condensed dofs
62  for (const auto & dof : global_dirichlet_dofs_set)
63  if ((dof_map.first_dof() <= dof) && (dof < dof_map.end_dof()))
64  local_non_condensed_dofs_set.erase(dof);
65 
66  // Finally, move local_non_condensed_dofs_set over to a vector for convenience in solve()
67  this->local_non_condensed_dofs_vector.clear();
68 
69  for (const auto & dof : local_non_condensed_dofs_set)
70  this->local_non_condensed_dofs_vector.push_back(dof);
71 
73 }
std::vector< dof_id_type > local_non_condensed_dofs_vector
Vector storing the local dof indices that will not be condensed.
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
bool condensed_dofs_initialized
A private flag to indicate whether the condensed dofs have been initialized.
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ initialize_parameters() [1/2]

void libMesh::RBParametrized::initialize_parameters ( const RBParameters mu_min_in,
const RBParameters mu_max_in,
const std::map< std::string, std::vector< Real >> &  discrete_parameter_values 
)
inherited

Initialize the parameter ranges and set current_parameters.

Parameter ranges are inclusive. The input min/max RBParameters should have exactly 1 sample each. Vector-valued samples are not currently supported for the min/max parameters or for discrete parameters.

Definition at line 53 of file rb_parametrized.C.

References libMesh::RBParametrized::_discrete_parameter_values, libMesh::RBParameters::begin_serialized(), libMesh::RBParameters::end_serialized(), libMesh::RBParameters::n_parameters(), libMesh::RBParameters::n_samples(), libMesh::Quality::name(), libMesh::RBParametrized::parameters_initialized, libMesh::RBParametrized::parameters_max, libMesh::RBParametrized::parameters_min, libMesh::Real, libMesh::RBParametrized::set_parameters(), and libMesh::RBParameters::set_value().

Referenced by libMesh::RBConstruction::enrich_basis_from_rhs_terms(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBDataDeserialization::load_parameter_ranges(), perform_SCM_greedy(), process_parameters_file(), libMesh::RBParametrized::read_parameter_data_from_files(), libMesh::RBEIMConstruction::set_rb_construction_parameters(), libMesh::RBConstruction::set_rb_construction_parameters(), RBParametersTest::testRBParametrized(), libMesh::RBEIMConstruction::train_eim_approximation_with_greedy(), libMesh::RBEIMConstruction::train_eim_approximation_with_POD(), libMesh::RBConstruction::train_reduced_basis_with_greedy(), and libMesh::RBConstruction::train_reduced_basis_with_POD().

56 {
57  // Check that the min/max vectors have the same size.
58  libmesh_error_msg_if(mu_min_in.n_parameters() != mu_max_in.n_parameters(),
59  "Error: Invalid mu_min/mu_max in initialize_parameters(), different number of parameters.");
60  libmesh_error_msg_if(mu_min_in.n_samples() != 1 ||
61  mu_max_in.n_samples() != 1,
62  "Error: Invalid mu_min/mu_max in initialize_parameters(), only 1 sample supported.");
63 
64  // Ensure all the values are valid for min and max.
65  auto pr_min = mu_min_in.begin_serialized();
66  auto pr_max = mu_max_in.begin_serialized();
67  for (; pr_min != mu_min_in.end_serialized(); ++pr_min, ++pr_max)
68  libmesh_error_msg_if((*pr_min).second > (*pr_max).second,
69  "Error: Invalid mu_min/mu_max in RBParameters constructor.");
70 
71  parameters_min = mu_min_in;
72  parameters_max = mu_max_in;
73 
74  // Add in min/max values due to the discrete parameters
75  for (const auto & [name, vals] : discrete_parameter_values)
76  {
77  libmesh_error_msg_if(vals.empty(), "Error: List of discrete parameters for " << name << " is empty.");
78 
79  Real min_val = *std::min_element(vals.begin(), vals.end());
80  Real max_val = *std::max_element(vals.begin(), vals.end());
81 
82  libmesh_assert_less_equal(min_val, max_val);
83 
84  parameters_min.set_value(name, min_val);
85  parameters_max.set_value(name, max_val);
86  }
87 
88  _discrete_parameter_values = discrete_parameter_values;
89 
91 
92  // Initialize the current parameters to parameters_min
94 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
RBParameters parameters_min
Vectors that define the ranges (min and max) for the parameters.
std::map< std::string, std::vector< Real > > _discrete_parameter_values
Map that defines the allowable values of any discrete parameters.
bool set_parameters(const RBParameters &params)
Set the current parameters to params The parameters are checked for validity; an error is thrown if t...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void set_value(const std::string &param_name, Real value)
Set the value of the specified parameter.

◆ initialize_parameters() [2/2]

void libMesh::RBParametrized::initialize_parameters ( const RBParametrized rb_parametrized)
inherited

Initialize the parameter ranges and set current_parameters.

Definition at line 96 of file rb_parametrized.C.

References libMesh::RBParametrized::get_discrete_parameter_values(), libMesh::RBParametrized::get_parameters_max(), libMesh::RBParametrized::get_parameters_min(), and libMesh::RBParametrized::initialize_parameters().

97 {
98  initialize_parameters(rb_parametrized.get_parameters_min(),
99  rb_parametrized.get_parameters_max(),
100  rb_parametrized.get_discrete_parameter_values());
101 }
void initialize_parameters(const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
Initialize the parameter ranges and set current_parameters.

◆ initialize_training_parameters()

void libMesh::RBConstructionBase< CondensedEigenSystem >::initialize_training_parameters ( const RBParameters mu_min,
const RBParameters mu_max,
const unsigned int  n_global_training_samples,
const std::map< std::string, bool > &  log_param_scale,
const bool  deterministic = true 
)
virtualinherited

Initialize the parameter ranges and indicate whether deterministic or random training parameters should be used and whether or not we want the parameters to be scaled logarithmically.

n_global_training_samples is the total number of samples to generate, which will be distributed across all the processors.

Definition at line 285 of file rb_construction_base.C.

References libMesh::index_range(), libMesh::out, and libMesh::Real.

Referenced by process_parameters_file().

290 {
291  if (!is_quiet())
292  {
293  // Print out some info about the training set initialization
294  libMesh::out << "Initializing training parameters with "
295  << (deterministic ? "deterministic " : "random " )
296  << "training set..." << std::endl;
297 
298  for (const auto & pr : log_param_scale)
299  libMesh::out << "Parameter "
300  << pr.first
301  << ": log scaling = "
302  << pr.second
303  << std::endl;
304 
305  libMesh::out << std::endl;
306  }
307 
308  if (deterministic)
309  {
310  const auto [first_local_index, last_local_index] =
312  log_param_scale,
314  n_global_training_samples,
315  mu_min,
316  mu_max,
318  _first_local_index = first_local_index;
319  _n_local_training_samples = last_local_index-first_local_index;
320  }
321  else
322  {
323  // Generate random training samples for all parameters
324  const auto [first_local_index, last_local_index] =
326  log_param_scale,
328  n_global_training_samples,
329  mu_min,
330  mu_max,
333  _first_local_index = first_local_index;
334  _n_local_training_samples = last_local_index-first_local_index;
335  }
337 
338  if (!serial_training_set)
340 
341  // For each parameter that only allows discrete values, we "snap" to the nearest
342  // allowable discrete value
343  if (get_n_discrete_params() > 0)
344  {
345  for (auto & [param_name, sample_vector] : _training_parameters)
346  {
347  if (is_discrete_parameter(param_name))
348  {
349  std::vector<Real> discrete_values =
350  get_discrete_parameter_values().find(param_name)->second;
351  for (const auto sample_idx : index_range(sample_vector))
352  {
353  // Round all values to the closest discrete value.
354  std::vector<Real> discretized_vector(sample_vector[sample_idx].size());
355  std::transform(sample_vector[sample_idx].cbegin(),
356  sample_vector[sample_idx].cend(),
357  discretized_vector.begin(),
358  [&discrete_values](const Real & val) {
359  return get_closest_value(val, discrete_values);
360  });
361  sample_vector[sample_idx] = discretized_vector;
362  }
363  }
364  }
365  }
366 
368 }
static std::pair< std::size_t, std::size_t > generate_training_parameters_random(const Parallel::Communicator &communicator, const std::map< std::string, bool > &log_param_scale, std::map< std::string, std::vector< RBParameter >> &local_training_parameters_in, const unsigned int n_global_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, const int training_parameters_random_seed=-1, const bool serial_training_set=false)
Static helper function for generating a randomized set of parameters.
static std::pair< std::size_t, std::size_t > generate_training_parameters_deterministic(const Parallel::Communicator &communicator, const std::map< std::string, bool > &log_param_scale, std::map< std::string, std::vector< RBParameter >> &local_training_parameters_in, const unsigned int n_global_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, const bool serial_training_set=false)
Static helper function for generating a deterministic set of parameters.
void sum(T &r) const
const Parallel::Communicator & comm() const
bool is_quiet() const
Is the system in quiet mode?
static Real get_closest_value(Real value, const std::vector< Real > &list_of_values)
unsigned int get_n_discrete_params() const
Get the number of discrete parameters.
numeric_index_type _first_local_index
The first sample-vector index from the global vector which is stored in the _training_parameters on t...
const std::map< std::string, std::vector< Real > > & get_discrete_parameter_values() const
Get a const reference to the discrete parameter values.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
OStreamProxy out
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
int _training_parameters_random_seed
If < 0, use std::time() * processor_id() to seed the random number generator for the training paramet...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
auto index_range(const T &sizable)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:111
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.
bool is_discrete_parameter(const std::string &mu_name) const
Is parameter mu_name discrete?

◆ is_adjoint_already_solved()

bool libMesh::System::is_adjoint_already_solved ( ) const
inlineinherited

Accessor for the adjoint_already_solved boolean.

Definition at line 406 of file system.h.

References libMesh::System::adjoint_already_solved.

Referenced by libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ImplicitSystem::qoi_parameter_hessian(), and libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product().

407  { return adjoint_already_solved;}
bool adjoint_already_solved
Has the adjoint problem already been solved? If the user sets adjoint_already_solved to true...
Definition: system.h:2242

◆ is_discrete_parameter()

bool libMesh::RBParametrized::is_discrete_parameter ( const std::string &  mu_name) const
inherited

Is parameter mu_name discrete?

Definition at line 363 of file rb_parametrized.C.

References libMesh::RBParametrized::_discrete_parameter_values, and libMesh::RBParametrized::parameters_initialized.

Referenced by libMesh::RBDataSerialization::add_parameter_ranges_to_builder(), libMesh::RBEIMConstruction::print_info(), libMesh::RBConstruction::print_info(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

364 {
365  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::is_discrete_parameter");
366 
367  return (_discrete_parameter_values.find(mu_name) != _discrete_parameter_values.end());
368 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
std::map< std::string, std::vector< Real > > _discrete_parameter_values
Map that defines the allowable values of any discrete parameters.

◆ is_initialized()

bool libMesh::System::is_initialized ( )
inlineinherited
Returns
true iff this system has been initialized.

Definition at line 2333 of file system.h.

References libMesh::System::_is_initialized.

Referenced by libMesh::System::add_variable(), libMesh::System::add_variables(), and libMesh::System::init().

2334 {
2335  return _is_initialized;
2336 }
bool _is_initialized
true when additional vectors and variables do not require immediate initialization, false otherwise.
Definition: system.h:2210

◆ is_quiet()

bool libMesh::RBConstructionBase< CondensedEigenSystem >::is_quiet ( ) const
inlineinherited

Is the system in quiet mode?

Definition at line 106 of file rb_construction_base.h.

References libMesh::RBConstructionBase< Base >::quiet_mode.

107  { return this->quiet_mode; }
bool quiet_mode
Flag to indicate whether we print out extra information during the Offline stage. ...

◆ load_matrix_B()

void libMesh::RBSCMConstruction::load_matrix_B ( )
protectedvirtual

Copy over the matrix to store in matrix_B, usually this is the mass or inner-product matrix, but needs to be implemented in subclass.

Definition at line 213 of file rb_scm_construction.C.

References libMesh::SparseMatrix< T >::add(), libMesh::SparseMatrix< T >::close(), libMesh::System::get_equation_systems(), libMesh::RBConstruction::get_inner_product_matrix(), libMesh::EquationSystems::get_system(), libMesh::EigenSystem::matrix_B, RB_system_name, and libMesh::SparseMatrix< T >::zero().

Referenced by perform_SCM_greedy().

214 {
215  // Load the operators from the RBConstruction
216  EquationSystems & es = this->get_equation_systems();
217  RBConstruction & rb_system = es.get_system<RBConstruction>(RB_system_name);
218 
219  matrix_B->zero();
220  matrix_B->close();
221  matrix_B->add(1.,*rb_system.get_inner_product_matrix());
222 }
SparseMatrix< Number > * matrix_B
A second system matrix for generalized eigenvalue problems.
Definition: eigen_system.h:321
const EquationSystems & get_equation_systems() const
Definition: system.h:730
virtual void add(const numeric_index_type i, const numeric_index_type j, const T value)=0
Add value to the element (i,j).
virtual void zero()=0
Set all entries to 0.
std::string RB_system_name
The name of the associated RB system.
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...

◆ load_training_set()

void libMesh::RBConstructionBase< CondensedEigenSystem >::load_training_set ( const std::map< std::string, std::vector< RBParameter >> &  new_training_set)
virtualinherited

Overwrite the training parameters with new_training_set.

This training set is assumed to contain only the samples local to this processor.

Definition at line 371 of file rb_construction_base.C.

References libMesh::make_range().

372 {
373  // Make sure we're running this on all processors at the same time
374  libmesh_parallel_only(this->comm());
375 
376  // First, make sure that an initial training set has already been generated
377  libmesh_error_msg_if(!_training_parameters_initialized,
378  "Error: load_training_set cannot be used to initialize parameters");
379 
380  // Make sure that the training set has the correct number of parameters
381  const unsigned int n_params = get_n_params();
382  libmesh_error_msg_if(new_training_set.size() > n_params,
383  "Error: new_training_set should not have more than get_n_params() parameters.");
384 
385  // Check that (new_training_set.size() == get_n_params()) is the same on all processes so that
386  // we go into the same branch of the "if" statement below on all processes.
387  const bool size_matches = (new_training_set.size() == n_params);
388  this->comm().verify(size_matches);
389 
390  if (size_matches)
391  {
392  // If new_training_set stores values for all parameters, then we overwrite
393  // _training_parameters with new_training_set.
394 
395  // Get the number of local and global training parameters
396  _first_local_index = 0;
398  cast_int<numeric_index_type>(new_training_set.begin()->second.size());
400 
401  if (!serial_training_set)
402  {
403  this->comm().sum(_n_global_training_samples);
404 
405  // Set the first/last indices.
406  std::vector<numeric_index_type> local_sizes (this->n_processors(), 0);
407  local_sizes[this->processor_id()] = _n_local_training_samples;
408  this->comm().sum(local_sizes);
409 
410  // first_local_index is the sum of local_sizes
411  // for all processor ids less than ours
412  for (auto p : make_range(this->processor_id()))
413  _first_local_index += local_sizes[p];
414  }
415 
416  // Ensure that the parameters are the same.
417  for (const auto & pr : _training_parameters)
418  libmesh_error_msg_if(!new_training_set.count(pr.first),
419  "Parameters must be identical in order to overwrite dataset.");
420 
421  // Copy the values from the new_training_set to the internal training_parameters.
422  _training_parameters = new_training_set;
423  }
424  else
425  {
426  // If new_training_set stores values for a subset of the parameters, then we keep the
427  // length of training_parameters unchanged and overwrite the entries of the specified
428  // parameters from new_training_set. Note that we repeatedly loop over new_training_set
429  // to fill up the entire length of the sample_vector.
430  for (auto & [param_name, sample_vector]: _training_parameters)
431  {
432  if (new_training_set.count(param_name))
433  {
434  for (const auto i : make_range(get_local_n_training_samples()))
435  {
436  const unsigned int num_new_samples = libmesh_map_find(new_training_set,param_name).size();
437  libmesh_error_msg_if (num_new_samples==0, "new_training_set set should not be empty");
438 
439  const unsigned int new_training_set_index = i % num_new_samples;
440  sample_vector[i] = libmesh_map_find(new_training_set,param_name)[new_training_set_index];
441  }
442  }
443  }
444  }
445 }
bool verify(const T &r) const
void sum(T &r) const
const Parallel::Communicator & comm() const
numeric_index_type _first_local_index
The first sample-vector index from the global vector which is stored in the _training_parameters on t...
processor_id_type n_processors() const
numeric_index_type get_local_n_training_samples() const
Get the total number of training samples local to this processor.
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
bool serial_training_set
This boolean flag indicates whether or not the training set should be the same on all processors...
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
processor_id_type processor_id() const
unsigned int get_n_params() const
Get the number of parameters.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ local_dof_indices()

void libMesh::System::local_dof_indices ( const unsigned int  var,
std::set< dof_id_type > &  var_indices 
) const
inherited

Fills the std::set with the degrees of freedom on the local processor corresponding the the variable number passed in.

Definition at line 1575 of file system.C.

References libMesh::DofMap::dof_indices(), libMesh::DofMap::end_dof(), libMesh::DofMap::first_dof(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), and libMesh::libmesh_assert().

Referenced by libMesh::System::discrete_var_norm(), SystemsTest::testBlockRestrictedVarNDofs(), and libMesh::DirectSolutionTransfer::transfer().

1577 {
1578  // Make sure the set is clear
1579  var_indices.clear();
1580 
1581  std::vector<dof_id_type> dof_indices;
1582 
1583  const dof_id_type
1584  first_local = this->get_dof_map().first_dof(),
1585  end_local = this->get_dof_map().end_dof();
1586 
1587  // Begin the loop over the elements
1588  for (const auto & elem : this->get_mesh().active_local_element_ptr_range())
1589  {
1590  this->get_dof_map().dof_indices (elem, dof_indices, var);
1591 
1592  for (dof_id_type dof : dof_indices)
1593  //If the dof is owned by the local processor
1594  if (first_local <= dof && dof < end_local)
1595  var_indices.insert(dof);
1596  }
1597 
1598  // we may have missed assigning DOFs to nodes that we own
1599  // but to which we have no connected elements matching our
1600  // variable restriction criterion. this will happen, for example,
1601  // if variable V is restricted to subdomain S. We may not own
1602  // any elements which live in S, but we may own nodes which are
1603  // *connected* to elements which do.
1604  for (const auto & node : this->get_mesh().local_node_ptr_range())
1605  {
1606  libmesh_assert(node);
1607  this->get_dof_map().dof_indices (node, dof_indices, var);
1608  for (auto dof : dof_indices)
1609  if (first_local <= dof && dof < end_local)
1610  var_indices.insert(dof);
1611  }
1612 }
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
Fills the vector di with the global degree of freedom indices for the element.
Definition: dof_map.C:1992
const MeshBase & get_mesh() const
Definition: system.h:2277
libmesh_assert(ctx)
dof_id_type first_dof(const processor_id_type proc) const
Definition: dof_map.h:684
dof_id_type end_dof(const processor_id_type proc) const
Definition: dof_map.h:708
const DofMap & get_dof_map() const
Definition: system.h:2293
uint8_t dof_id_type
Definition: id_types.h:67

◆ n_active_dofs()

dof_id_type libMesh::System::n_active_dofs ( ) const
inlineinherited
Returns
The number of active degrees of freedom for this System.

Definition at line 2461 of file system.h.

References libMesh::System::n_constrained_dofs(), and libMesh::System::n_dofs().

2462 {
2463  return this->n_dofs() - this->n_constrained_dofs();
2464 }
dof_id_type n_dofs() const
Definition: system.C:113
dof_id_type n_constrained_dofs() const
Definition: system.C:120

◆ n_components()

unsigned int libMesh::System::n_components ( ) const
inlineinherited
Returns
The total number of scalar components in the system's variables. This will equal n_vars() in the case of all scalar-valued variables.

Definition at line 2365 of file system.h.

References libMesh::System::_variables, libMesh::Variable::first_scalar_number(), and libMesh::Variable::n_components().

Referenced by libMesh::System::add_variables().

2366 {
2367  if (_variables.empty())
2368  return 0;
2369 
2370  const Variable & last = _variables.back();
2371  return last.first_scalar_number() + last.n_components();
2372 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140

◆ n_constrained_dofs()

dof_id_type libMesh::System::n_constrained_dofs ( ) const
inherited
Returns
The total number of constrained degrees of freedom in the system.

Definition at line 120 of file system.C.

References libMesh::System::_dof_map.

Referenced by libMesh::System::get_info(), libMesh::System::n_active_dofs(), libMesh::EigenSystem::solve(), and BoundaryInfoTest::testShellFaceConstraints().

121 {
122 #ifdef LIBMESH_ENABLE_CONSTRAINTS
123 
124  return _dof_map->n_constrained_dofs();
125 
126 #else
127 
128  return 0;
129 
130 #endif
131 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ n_dofs()

dof_id_type libMesh::System::n_dofs ( ) const
inherited
Returns
The number of degrees of freedom in the system

Definition at line 113 of file system.C.

References libMesh::System::_dof_map.

Referenced by libMesh::TransientRBConstruction::add_IC_to_RB_space(), libMesh::System::add_vector(), libMesh::TransientRBConstruction::allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), libMesh::TransientRBConstruction::assemble_affine_expansion(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::TransientRBConstruction::enrich_RB_space(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::System::get_info(), libMesh::SecondOrderUnsteadySolver::init_data(), libMesh::UnsteadySolver::init_data(), libMesh::System::init_data(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), main(), libMesh::TransientRBConstruction::mass_matrix_scaled_matvec(), libMesh::System::n_active_dofs(), libMesh::CondensedEigenSystem::n_global_non_condensed_dofs(), libMesh::FEMSystem::numerical_jacobian(), perform_SCM_greedy(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), libMesh::System::read_legacy_data(), libMesh::TransientRBConstruction::read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::System::restrict_vectors(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), libMesh::TransientRBConstruction::set_error_temporal_data(), SystemsTest::test100KVariables(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), SystemsTest::testPostInitAddVector(), SystemsTest::testPostInitAddVectorTypeChange(), SystemsTest::testProjectCubeWithMeshFunction(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), libMesh::RBConstruction::train_reduced_basis_with_POD(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::TransientRBConstruction::truth_assembly(), libMesh::RBConstruction::truth_assembly(), libMesh::TransientRBConstruction::update_RB_initial_condition_all_N(), libMesh::TransientRBConstruction::update_RB_system_matrices(), libMesh::RBConstruction::update_RB_system_matrices(), libMesh::TransientRBConstruction::update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

114 {
115  return _dof_map->n_dofs();
116 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ n_global_non_condensed_dofs()

dof_id_type libMesh::CondensedEigenSystem::n_global_non_condensed_dofs ( ) const
inherited
Returns
The global number of non-condensed dofs in the system.

Definition at line 75 of file condensed_eigen_system.C.

References libMesh::ParallelObject::comm(), libMesh::CondensedEigenSystem::condensed_dofs_initialized, libMesh::CondensedEigenSystem::local_non_condensed_dofs_vector, libMesh::System::n_dofs(), and TIMPI::Communicator::sum().

76 {
78  {
79  return this->n_dofs();
80  }
81  else
82  {
84  cast_int<dof_id_type>(local_non_condensed_dofs_vector.size());
85  this->comm().sum(n_global_non_condensed_dofs);
86 
88  }
89 }
void sum(T &r) const
const Parallel::Communicator & comm() const
dof_id_type n_dofs() const
Definition: system.C:113
dof_id_type n_global_non_condensed_dofs() const
std::vector< dof_id_type > local_non_condensed_dofs_vector
Vector storing the local dof indices that will not be condensed.
bool condensed_dofs_initialized
A private flag to indicate whether the condensed dofs have been initialized.
uint8_t dof_id_type
Definition: id_types.h:67

◆ n_local_constrained_dofs()

dof_id_type libMesh::System::n_local_constrained_dofs ( ) const
inherited
Returns
The number of constrained degrees of freedom on this processor.

Definition at line 135 of file system.C.

References libMesh::System::_dof_map.

Referenced by libMesh::System::get_info().

136 {
137 #ifdef LIBMESH_ENABLE_CONSTRAINTS
138 
139  return _dof_map->n_local_constrained_dofs();
140 
141 #else
142 
143  return 0;
144 
145 #endif
146 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113

◆ n_local_dofs()

dof_id_type libMesh::System::n_local_dofs ( ) const
inherited
Returns
The number of degrees of freedom local to this processor

Definition at line 150 of file system.C.

References libMesh::System::_dof_map, and libMesh::ParallelObject::processor_id().

Referenced by libMesh::TransientRBConstruction::add_IC_to_RB_space(), libMesh::System::add_vector(), libMesh::TransientRBConstruction::allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), libMesh::TransientRBConstruction::assemble_affine_expansion(), libMesh::PetscDMWrapper::build_section(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::TransientRBConstruction::enrich_RB_space(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::System::get_info(), libMesh::SecondOrderUnsteadySolver::init_data(), libMesh::UnsteadySolver::init_data(), libMesh::System::init_data(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), main(), libMesh::TransientRBConstruction::mass_matrix_scaled_matvec(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), libMesh::TransientRBConstruction::read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::System::restrict_vectors(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), libMesh::TransientRBConstruction::set_error_temporal_data(), MeshFunctionTest::test_p_level(), libMesh::RBConstruction::train_reduced_basis_with_POD(), libMesh::TransientRBConstruction::truth_assembly(), libMesh::RBConstruction::truth_assembly(), libMesh::TransientRBConstruction::update_RB_initial_condition_all_N(), libMesh::TransientRBConstruction::update_RB_system_matrices(), libMesh::RBConstruction::update_RB_system_matrices(), libMesh::TransientRBConstruction::update_residual_terms(), and libMesh::RBConstruction::update_residual_terms().

151 {
152  return _dof_map->n_dofs_on_processor (this->processor_id());
153 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
processor_id_type processor_id() const

◆ n_matrices()

unsigned int libMesh::System::n_matrices ( ) const
inlineinherited
Returns
The number of matrices handled by this system. This is the size of the _matrices map

Definition at line 2594 of file system.h.

References libMesh::System::_matrices.

Referenced by libMesh::ImplicitSystem::add_matrices(), and libMesh::System::get_info().

2595 {
2596  return cast_int<unsigned int>(_matrices.size());
2597 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ n_objects() [1/2]

static unsigned int libMesh::ReferenceCounter::n_objects ( )
inlinestaticinherited

Prints the number of outstanding (created, but not yet destroyed) objects.

Definition at line 85 of file reference_counter.h.

References libMesh::ReferenceCounter::_n_objects.

Referenced by libMesh::LibMeshInit::~LibMeshInit().

86  { return _n_objects; }
static Threads::atomic< unsigned int > _n_objects
The number of objects.

◆ n_objects() [2/2]

static unsigned int libMesh::ReferenceCounter::n_objects ( )
inlinestaticinherited

Prints the number of outstanding (created, but not yet destroyed) objects.

Definition at line 85 of file reference_counter.h.

References libMesh::ReferenceCounter::_n_objects.

Referenced by libMesh::LibMeshInit::~LibMeshInit().

86  { return _n_objects; }
static Threads::atomic< unsigned int > _n_objects
The number of objects.

◆ n_processors()

processor_id_type libMesh::ParallelObject::n_processors ( ) const
inlineinherited
Returns
The number of processors in the group.

Definition at line 103 of file parallel_object.h.

References libMesh::ParallelObject::_communicator, libMesh::libmesh_assert(), and TIMPI::Communicator::size().

Referenced by libMesh::Partitioner::_find_global_index_by_pid_map(), libMesh::BoundaryInfo::_find_id_maps(), libMesh::DofMap::add_constraints_to_send_list(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::DistributedMesh::add_elem(), libMesh::DofMap::add_neighbors_to_send_list(), libMesh::DistributedMesh::add_node(), libMesh::System::add_vector(), libMesh::LaplaceMeshSmoother::allgather_graph(), libMesh::DofMap::allgather_recursive_constraints(), libMesh::FEMSystem::assembly(), libMesh::Nemesis_IO::assert_symmetric_cmaps(), libMesh::Partitioner::assign_partitioning(), libMesh::AztecLinearSolver< T >::AztecLinearSolver(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::DistributedMesh::clear(), libMesh::DistributedMesh::clear_elems(), libMesh::Nemesis_IO_Helper::compute_border_node_ids(), libMesh::Nemesis_IO_Helper::construct_nemesis_filename(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), libMesh::UnstructuredMesh::create_pid_mesh(), libMesh::MeshTools::create_processor_bounding_box(), libMesh::DofMap::distribute_dofs(), libMesh::DofMap::distribute_scalar_dofs(), libMesh::DistributedMesh::DistributedMesh(), libMesh::EnsightIO::EnsightIO(), libMesh::RBEIMEvaluation::gather_bfs(), libMesh::MeshBase::get_info(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::Nemesis_IO_Helper::initialize(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::DistributedMesh::insert_elem(), libMesh::MeshTools::libmesh_assert_contiguous_dof_ids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_new_node_procids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_topology_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), libMesh::MeshTools::libmesh_assert_valid_dof_ids(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::MeshTools::libmesh_assert_valid_refinement_flags(), libMesh::DofMap::local_variable_indices(), libMesh::MeshRefinement::make_coarsening_compatible(), libMesh::MeshBase::n_active_elem_on_proc(), libMesh::MeshBase::n_elem_on_proc(), libMesh::MeshBase::n_nodes_on_proc(), libMesh::RBEIMEvaluation::node_gather_bfs(), libMesh::Partitioner::partition(), libMesh::MeshBase::partition(), libMesh::Partitioner::partition_unpartitioned_elements(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::DofMap::prepare_send_list(), libMesh::DofMap::print_dof_constraints(), libMesh::NameBasedIO::read(), libMesh::Nemesis_IO::read(), libMesh::CheckpointIO::read(), libMesh::CheckpointIO::read_connectivity(), libMesh::XdrIO::read_header(), libMesh::CheckpointIO::read_nodes(), libMesh::System::read_parallel_data(), libMesh::System::read_SCALAR_dofs(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::System::read_serialized_vector(), libMesh::DistributedMesh::renumber_dof_objects(), libMesh::Partitioner::repartition(), OverlappingFunctorTest::run_partitioner_test(), libMesh::DofMap::scatter_constraints(), libMesh::DistributedMesh::set_next_unique_id(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::PetscDMWrapper::set_point_range_in_section(), WriteVecAndScalar::setupTests(), libMesh::RBEIMEvaluation::side_gather_bfs(), DistributedMeshTest::testRemoteElemError(), CheckpointIOTest::testSplitter(), libMesh::MeshRefinement::uniformly_coarsen(), libMesh::DistributedMesh::update_parallel_id_counts(), libMesh::GMVIO::write_binary(), libMesh::GMVIO::write_discontinuous_gmv(), libMesh::ExodusII_IO_Helper::write_nodal_coordinates(), libMesh::VTKIO::write_nodal_data(), libMesh::ExodusII_IO::write_nodal_data(), libMesh::System::write_parallel_data(), libMesh::System::write_SCALAR_dofs(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::XdrIO::write_serialized_nodes(), and libMesh::XdrIO::write_serialized_nodesets().

104  {
105  processor_id_type returnval =
106  cast_int<processor_id_type>(_communicator.size());
107  libmesh_assert(returnval); // We never have an empty comm
108  return returnval;
109  }
const Parallel::Communicator & _communicator
processor_id_type size() const
uint8_t processor_id_type
libmesh_assert(ctx)

◆ n_qois()

unsigned int libMesh::System::n_qois ( ) const
inlineinherited

Number of currently active quantities of interest.

Definition at line 2516 of file system.h.

References libMesh::System::qoi, and libMesh::System::qoi_error_estimates.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::ImplicitSystem::adjoint_qoi_parameter_sensitivity(), libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::ImplicitSystem::adjoint_solve(), libMesh::SensitivityData::allocate_data(), libMesh::SensitivityData::allocate_hessian_data(), libMesh::ExplicitSystem::assemble_qoi(), libMesh::FEMSystem::assemble_qoi(), libMesh::ExplicitSystem::assemble_qoi_derivative(), libMesh::FEMSystem::assemble_qoi_derivative(), libMesh::DiffContext::DiffContext(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::FileSolutionHistory::FileSolutionHistory(), libMesh::ImplicitSystem::forward_qoi_parameter_sensitivity(), libMesh::UnsteadySolver::init_adjoints(), libMesh::TimeSolver::init_adjoints(), libMesh::System::init_qois(), libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::TwostepTimeSolver::integrate_adjoint_refinement_error_estimate(), libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate(), libMesh::Euler2Solver::integrate_qoi_timestep(), libMesh::TwostepTimeSolver::integrate_qoi_timestep(), libMesh::EulerSolver::integrate_qoi_timestep(), main(), libMesh::FEMContext::pre_fe_reinit(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), libMesh::FileSolutionHistory::retrieve(), libMesh::QoISet::size(), libMesh::UnsteadySolver::UnsteadySolver(), and libMesh::ImplicitSystem::weighted_sensitivity_adjoint_solve().

2517 {
2518 #ifndef LIBMESH_ENABLE_DEPRECATED
2519  libmesh_assert_equal_to(this->qoi.size(), this->qoi_error_estimates.size());
2520 #endif
2521 
2522  return cast_int<unsigned int>(this->qoi.size());
2523 }
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611
std::vector< Number > qoi_error_estimates
Vector to hold error estimates for qois, either from a steady state calculation, or from a single uns...
Definition: system.h:1619

◆ n_variable_groups()

unsigned int libMesh::System::n_variable_groups ( ) const
inlineinherited
Returns
The number of VariableGroup variable groups in the system

Definition at line 2357 of file system.h.

References libMesh::System::_variable_groups.

Referenced by libMesh::System::add_variable(), libMesh::System::add_variables(), libMesh::FEMSystem::assembly(), libMesh::System::get_info(), and libMesh::System::init_data().

2358 {
2359  return cast_int<unsigned int>(_variable_groups.size());
2360 }
std::vector< VariableGroup > _variable_groups
The VariableGroup in this System.
Definition: system.h:2145

◆ n_vars()

unsigned int libMesh::System::n_vars ( ) const
inlineinherited
Returns
The number of variables in the system

Definition at line 2349 of file system.h.

References libMesh::System::_variables.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::PetscDMWrapper::add_dofs_helper(), libMesh::DiffContext::add_localized_vector(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::System::add_variable(), libMesh::System::add_variables(), libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::FEMContext::attach_quadrature_rules(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::PetscDMWrapper::build_section(), libMesh::System::calculate_norm(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::DGFEMContext::DGFEMContext(), libMesh::DiffContext::DiffContext(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::ErrorEstimator::estimate_errors(), libMesh::ExactSolution::ExactSolution(), libMesh::FEMContext::find_hardest_fe_type(), libMesh::EquationSystems::find_variable_numbers(), libMesh::System::get_all_variable_numbers(), libMesh::System::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::FEMSystem::init_context(), libMesh::RBEIMConstruction::init_context(), libMesh::FEMContext::init_internal_data(), libMesh::DifferentiablePhysics::init_physics(), AssemblyA0::interior_assembly(), AssemblyA1::interior_assembly(), AssemblyA2::interior_assembly(), InnerProductAssembly::interior_assembly(), main(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), output_norms(), libMesh::petsc_auto_fieldsplit(), libMesh::FEMContext::pre_fe_reinit(), libMesh::RBEIMEvaluation::project_qp_data_map_onto_system(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::System::re_update(), libMesh::System::read_legacy_data(), libMesh::System::read_parallel_data(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::System::read_serialized_vector(), libMesh::System::read_serialized_vectors(), libMesh::System::reinit_mesh(), libMesh::HPCoarsenTest::select_refinement(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::SystemSubsetBySubdomain::set_var_nums(), OverlappingTestBase::setup_coupling_matrix(), SystemsTest::testDofCouplingWithVarGroups(), SlitMeshRefinedSystemTest::testRestart(), SlitMeshRefinedSystemTest::testSystem(), libMesh::System::write_header(), libMesh::System::write_parallel_data(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::System::write_serialized_vector(), libMesh::System::write_serialized_vectors(), and libMesh::System::zero_variable().

2350 {
2351  return cast_int<unsigned int>(_variables.size());
2352 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140

◆ n_vectors()

unsigned int libMesh::System::n_vectors ( ) const
inlineinherited
Returns
The number of vectors (in addition to the solution) handled by this system This is the size of the _vectors map

Definition at line 2477 of file system.h.

References libMesh::System::_vectors.

Referenced by libMesh::ExplicitSystem::add_system_rhs(), libMesh::System::compare(), libMesh::System::get_info(), main(), libMesh::InterMeshProjection::project_system_vectors(), and libMesh::System::write_header().

2478 {
2479  return cast_int<unsigned int>(_vectors.size());
2480 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ name()

const std::string & libMesh::System::name ( ) const
inlineinherited

◆ number()

unsigned int libMesh::System::number ( ) const
inlineinherited
Returns
The system number.

Definition at line 2269 of file system.h.

References libMesh::System::_sys_number.

Referenced by libMesh::ExactSolution::_compute_error(), libMesh::PetscDMWrapper::add_dofs_helper(), assemble_matrix_and_rhs(), assemble_shell(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::find_squared_element_error(), libMesh::EquationSystems::find_variable_numbers(), libMesh::System::get_info(), main(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SortAndCopy::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectEdges::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()(), libMesh::System::read_legacy_data(), libMesh::System::read_parallel_data(), libMesh::System::read_serialized_blocked_dof_objects(), LinearElasticityWithContact::residual_and_jacobian(), SolidSystem::save_initial_mesh(), libMesh::HPCoarsenTest::select_refinement(), libMesh::PetscDMWrapper::set_point_range_in_section(), MeshInputTest::testCopyElementVectorImpl(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::MeshfreeSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), libMesh::BoundaryVolumeSolutionTransfer::transfer_volume_boundary(), libMesh::DTKAdapter::update_variable_values(), libMesh::System::write_parallel_data(), libMesh::System::write_serialized_blocked_dof_objects(), and libMesh::System::zero_variable().

2270 {
2271  return _sys_number;
2272 }
const unsigned int _sys_number
The number associated with this system.
Definition: system.h:2135

◆ operator=() [1/2]

RBSCMConstruction& libMesh::RBSCMConstruction::operator= ( const RBSCMConstruction )
delete

◆ operator=() [2/2]

RBSCMConstruction& libMesh::RBSCMConstruction::operator= ( RBSCMConstruction &&  )
delete

◆ perform_SCM_greedy()

void libMesh::RBSCMConstruction::perform_SCM_greedy ( )
virtual

Perform the SCM greedy algorithm to develop a lower bound over the training set.

Definition at line 224 of file rb_scm_construction.C.

References attach_deflation_space(), compute_SCM_bounding_box(), compute_SCM_bounds_on_training_set(), enrich_C_J(), evaluate_stability_constant(), libMesh::System::get_dof_map(), libMesh::System::get_equation_systems(), libMesh::EquationSystems::get_system(), libMesh::CondensedEigenSystem::initialize_condensed_dofs(), libMesh::RBParametrized::initialize_parameters(), libMesh::DofMap::is_constrained_dof(), load_matrix_B(), libMesh::System::n_dofs(), libMesh::out, rb_scm_eval, RB_system_name, and SCM_training_tolerance.

225 {
226  LOG_SCOPE("perform_SCM_greedy()", "RBSCMConstruction");
227 
228  // initialize rb_scm_eval's parameters
230 
231 #ifdef LIBMESH_ENABLE_CONSTRAINTS
232  // Get a list of constrained dofs from rb_system
233  std::set<dof_id_type> constrained_dofs_set;
234  EquationSystems & es = this->get_equation_systems();
235  RBConstruction & rb_system = es.get_system<RBConstruction>(RB_system_name);
236 
237  for (dof_id_type i=0; i<rb_system.n_dofs(); i++)
238  {
239  if (rb_system.get_dof_map().is_constrained_dof(i))
240  {
241  constrained_dofs_set.insert(i);
242  }
243  }
244 
245  // Use these constrained dofs to identify which dofs we want to "get rid of"
246  // (i.e. condense) in our eigenproblems.
247  this->initialize_condensed_dofs(constrained_dofs_set);
248 #endif // LIBMESH_ENABLE_CONSTRAINTS
249 
250  // Copy the inner product matrix over from rb_system to be used as matrix_B
251  load_matrix_B();
252 
254 
256  // This loads the new parameter into current_parameters
257  enrich_C_J(0);
258 
259  unsigned int SCM_iter=0;
260  while (true)
261  {
262  // matrix_A is reinitialized for the current parameters
263  // on each call to evaluate_stability_constant
265 
266  std::pair<unsigned int,Real> SCM_error_pair = compute_SCM_bounds_on_training_set();
267 
268  libMesh::out << "SCM iteration " << SCM_iter
269  << ", max_SCM_error = " << SCM_error_pair.second << std::endl;
270 
271  if (SCM_error_pair.second < SCM_training_tolerance)
272  {
273  libMesh::out << std::endl << "SCM tolerance of " << SCM_training_tolerance << " reached."
274  << std::endl << std::endl;
275  break;
276  }
277 
278  // If we need another SCM iteration, then enrich C_J
279  enrich_C_J(SCM_error_pair.first);
280 
281  libMesh::out << std::endl << "-----------------------------------" << std::endl << std::endl;
282 
283  SCM_iter++;
284  }
285 }
const EquationSystems & get_equation_systems() const
Definition: system.h:730
virtual void enrich_C_J(unsigned int new_C_J_index)
Enrich C_J by adding the element of SCM_training_samples that has the largest gap between alpha_LB an...
virtual void evaluate_stability_constant()
Compute the stability constant for current_parameters by solving a generalized eigenvalue problem ove...
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...
Real SCM_training_tolerance
Tolerance which controls when to terminate the SCM Greedy.
virtual void load_matrix_B()
Copy over the matrix to store in matrix_B, usually this is the mass or inner-product matrix...
std::string RB_system_name
The name of the associated RB system.
virtual void attach_deflation_space()
Attach the deflation space defined by the specified vector, can be useful in solving constrained eige...
void initialize_condensed_dofs(const std::set< dof_id_type > &global_condensed_dofs_set=std::set< dof_id_type >())
Loop over the dofs on each processor to initialize the list of non-condensed dofs.
virtual std::pair< unsigned int, Real > compute_SCM_bounds_on_training_set()
Compute upper and lower bounds for each SCM training point.
virtual void compute_SCM_bounding_box()
Compute the SCM bounding box.
OStreamProxy out
void initialize_parameters(const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
Initialize the parameter ranges and set current_parameters.
uint8_t dof_id_type
Definition: id_types.h:67

◆ point_gradient() [1/4]

Gradient libMesh::System::point_gradient ( unsigned int  var,
const Point p,
const bool  insist_on_success = true,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The gradient of the solution variable var at the physical point p in the mesh, similarly to point_value.

Definition at line 2498 of file system.C.

References libMesh::Variable::active_subdomains(), TIMPI::Communicator::broadcast(), libMesh::ParallelObject::comm(), libMesh::PointLocatorBase::enable_out_of_mesh_mode(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), mesh, TIMPI::Communicator::min(), libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), and libMesh::System::variable().

Referenced by line_print(), and libMesh::System::point_gradient().

2502 {
2503  // This function must be called on every processor; there's no
2504  // telling where in the partition p falls.
2505  parallel_object_only();
2506 
2507  // And every processor had better agree about which point we're
2508  // looking for
2509 #ifndef NDEBUG
2510  libmesh_assert(this->comm().verify(p(0)));
2511 #if LIBMESH_DIM > 1
2512  libmesh_assert(this->comm().verify(p(1)));
2513 #endif
2514 #if LIBMESH_DIM > 2
2515  libmesh_assert(this->comm().verify(p(2)));
2516 #endif
2517 #endif // NDEBUG
2518 
2519  // Get a reference to the mesh object associated with the system object that calls this function
2520  const MeshBase & mesh = this->get_mesh();
2521 
2522  // Use an existing PointLocator or create a new one
2523  std::unique_ptr<PointLocatorBase> locator_ptr = mesh.sub_point_locator();
2524  PointLocatorBase & locator = *locator_ptr;
2525 
2526  if (!insist_on_success || !mesh.is_serial())
2527  locator.enable_out_of_mesh_mode();
2528 
2529  // Get a pointer to an element that contains p and allows us to
2530  // evaluate var
2531  const std::set<subdomain_id_type> & raw_subdomains =
2532  this->variable(var).active_subdomains();
2533  const std::set<subdomain_id_type> * implicit_subdomains =
2534  raw_subdomains.empty() ? nullptr : &raw_subdomains;
2535  const Elem * e = locator(p, implicit_subdomains);
2536 
2537  Gradient grad_u;
2538 
2539  if (e && this->get_dof_map().is_evaluable(*e, var))
2540  grad_u = point_gradient(var, p, *e, sol);
2541 
2542  // If I have an element containing p, then let's let everyone know
2543  processor_id_type lowest_owner =
2544  (e && (e->processor_id() == this->processor_id())) ?
2545  this->processor_id() : this->n_processors();
2546  this->comm().min(lowest_owner);
2547 
2548  // Everybody should get their value from a processor that was able
2549  // to compute it.
2550  // If nobody admits owning the point, we may have a problem.
2551  if (lowest_owner != this->n_processors())
2552  this->comm().broadcast(grad_u, lowest_owner);
2553  else
2554  libmesh_assert(!insist_on_success);
2555 
2556  return grad_u;
2557 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
Gradient point_gradient(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2498
MeshBase & mesh
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
uint8_t processor_id_type
processor_id_type n_processors() const
const std::set< subdomain_id_type > & active_subdomains() const
Definition: variable.h:171
void min(const T &r, T &o, Request &req) const
NumberVectorValue Gradient
libmesh_assert(ctx)
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_gradient() [2/4]

Gradient libMesh::System::point_gradient ( unsigned int  var,
const Point p,
const Elem e,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The gradient of the solution variable var at the physical point p in local Elem e in the mesh, similarly to point_value.

Definition at line 2560 of file system.C.

References libMesh::FEInterface::compute_data(), libMesh::Elem::contains_point(), libMesh::System::current_local_solution, dim, libMesh::Elem::dim(), libMesh::DofMap::dof_indices(), libMesh::FEComputeData::dshape, libMesh::FEComputeData::enable_derivative(), libMesh::System::get_dof_map(), libMesh::System::get_equation_systems(), libMesh::FEMap::inverse_map(), libMesh::DofMap::is_evaluable(), libMesh::libmesh_assert(), libMesh::FEComputeData::local_transform, and libMesh::DofMap::variable_type().

2564 {
2565  // Ensuring that the given point is really in the element is an
2566  // expensive assert, but as long as debugging is turned on we might
2567  // as well try to catch a particularly nasty potential error
2568  libmesh_assert (e.contains_point(p));
2569 
2570  if (!sol)
2571  sol = this->current_local_solution.get();
2572 
2573  // Get the dof map to get the proper indices for our computation
2574  const DofMap & dof_map = this->get_dof_map();
2575 
2576  // write the element dimension into a separate variable.
2577  const unsigned int dim = e.dim();
2578 
2579  // Make sure we can evaluate on this element.
2580  libmesh_assert (dof_map.is_evaluable(e, var));
2581 
2582  // Need dof_indices for phi[i][j]
2583  std::vector<dof_id_type> dof_indices;
2584 
2585  // Fill in the dof_indices for our element
2586  dof_map.dof_indices (&e, dof_indices, var);
2587 
2588  // Get the no of dofs associated with this point
2589  const unsigned int num_dofs = cast_int<unsigned int>
2590  (dof_indices.size());
2591 
2592  FEType fe_type = dof_map.variable_type(var);
2593 
2594  // Map the physical co-ordinates to the master co-ordinates
2595  Point coor = FEMap::inverse_map(dim, &e, p);
2596 
2597  // get the shape function value via the FEInterface to also handle the case
2598  // of infinite elements correctly, the shape function is not fe->phi().
2599  FEComputeData fe_data(this->get_equation_systems(), coor);
2600  fe_data.enable_derivative();
2601  FEInterface::compute_data(dim, fe_type, &e, fe_data);
2602 
2603  // Get ready to accumulate a gradient
2604  Gradient grad_u;
2605 
2606  for (unsigned int l=0; l<num_dofs; l++)
2607  {
2608  // Chartesian coordinates have always LIBMESH_DIM entries,
2609  // local coordinates have as many coordinates as the element has.
2610  for (std::size_t v=0; v<dim; v++)
2611  for (std::size_t xyz=0; xyz<LIBMESH_DIM; xyz++)
2612  {
2613  // FIXME: this needs better syntax: It is matrix-vector multiplication.
2614  grad_u(xyz) += fe_data.local_transform[v][xyz]
2615  * fe_data.dshape[l](v)
2616  * (*sol)(dof_indices[l]);
2617  }
2618  }
2619 
2620  return grad_u;
2621 }
unsigned int dim
static Point inverse_map(const unsigned int dim, const Elem *elem, const Point &p, const Real tolerance=TOLERANCE, const bool secure=true, const bool extra_checks=true)
Definition: fe_map.C:1626
const EquationSystems & get_equation_systems() const
Definition: system.h:730
static void compute_data(const unsigned int dim, const FEType &fe_t, const Elem *elem, FEComputeData &data)
Lets the appropriate child of FEBase compute the requested data for the input specified in data...
NumberVectorValue Gradient
libmesh_assert(ctx)
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_gradient() [3/4]

Gradient libMesh::System::point_gradient ( unsigned int  var,
const Point p,
const Elem e 
) const
inherited

Calls the version of point_gradient() which takes a reference.

This function exists only to prevent people from calling the version of point_gradient() that has a boolean third argument, which would result in unnecessary PointLocator calls.

Definition at line 2625 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::point_gradient().

2626 {
2627  libmesh_assert(e);
2628  return this->point_gradient(var, p, *e);
2629 }
Gradient point_gradient(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2498
libmesh_assert(ctx)

◆ point_gradient() [4/4]

Gradient libMesh::System::point_gradient ( unsigned int  var,
const Point p,
const NumericVector< Number > *  sol 
) const
inherited

Calls the parallel version of point_gradient().

This function exists only to prevent people from accidentally calling the version of point_gradient() that has a boolean third argument, which would result in incorrect output.

Definition at line 2633 of file system.C.

References libMesh::System::point_gradient().

2634 {
2635  return this->point_gradient(var, p, true, sol);
2636 }
Gradient point_gradient(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2498

◆ point_hessian() [1/4]

Tensor libMesh::System::point_hessian ( unsigned int  var,
const Point p,
const bool  insist_on_success = true,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The second derivative tensor of the solution variable var at the physical point p in the mesh, similarly to point_value.

Definition at line 2642 of file system.C.

References libMesh::Variable::active_subdomains(), TIMPI::Communicator::broadcast(), libMesh::ParallelObject::comm(), libMesh::PointLocatorBase::enable_out_of_mesh_mode(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), mesh, TIMPI::Communicator::min(), libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), and libMesh::System::variable().

Referenced by libMesh::System::point_hessian().

2646 {
2647  // This function must be called on every processor; there's no
2648  // telling where in the partition p falls.
2649  parallel_object_only();
2650 
2651  // And every processor had better agree about which point we're
2652  // looking for
2653 #ifndef NDEBUG
2654  libmesh_assert(this->comm().verify(p(0)));
2655 #if LIBMESH_DIM > 1
2656  libmesh_assert(this->comm().verify(p(1)));
2657 #endif
2658 #if LIBMESH_DIM > 2
2659  libmesh_assert(this->comm().verify(p(2)));
2660 #endif
2661 #endif // NDEBUG
2662 
2663  // Get a reference to the mesh object associated with the system object that calls this function
2664  const MeshBase & mesh = this->get_mesh();
2665 
2666  // Use an existing PointLocator or create a new one
2667  std::unique_ptr<PointLocatorBase> locator_ptr = mesh.sub_point_locator();
2668  PointLocatorBase & locator = *locator_ptr;
2669 
2670  if (!insist_on_success || !mesh.is_serial())
2671  locator.enable_out_of_mesh_mode();
2672 
2673  // Get a pointer to an element that contains p and allows us to
2674  // evaluate var
2675  const std::set<subdomain_id_type> & raw_subdomains =
2676  this->variable(var).active_subdomains();
2677  const std::set<subdomain_id_type> * implicit_subdomains =
2678  raw_subdomains.empty() ? nullptr : &raw_subdomains;
2679  const Elem * e = locator(p, implicit_subdomains);
2680 
2681  Tensor hess_u;
2682 
2683  if (e && this->get_dof_map().is_evaluable(*e, var))
2684  hess_u = point_hessian(var, p, *e, sol);
2685 
2686  // If I have an element containing p, then let's let everyone know
2687  processor_id_type lowest_owner =
2688  (e && (e->processor_id() == this->processor_id())) ?
2689  this->processor_id() : this->n_processors();
2690  this->comm().min(lowest_owner);
2691 
2692  // Everybody should get their value from a processor that was able
2693  // to compute it.
2694  // If nobody admits owning the point, we may have a problem.
2695  if (lowest_owner != this->n_processors())
2696  this->comm().broadcast(hess_u, lowest_owner);
2697  else
2698  libmesh_assert(!insist_on_success);
2699 
2700  return hess_u;
2701 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
MeshBase & mesh
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
uint8_t processor_id_type
processor_id_type n_processors() const
const std::set< subdomain_id_type > & active_subdomains() const
Definition: variable.h:171
void min(const T &r, T &o, Request &req) const
libmesh_assert(ctx)
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
NumberTensorValue Tensor
Tensor point_hessian(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2642
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_hessian() [2/4]

Tensor libMesh::System::point_hessian ( unsigned int  var,
const Point p,
const Elem e,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The second derivative tensor of the solution variable var at the physical point p in local Elem e in the mesh, similarly to point_value.

Definition at line 2703 of file system.C.

References libMesh::TypeTensor< T >::add_scaled(), libMesh::FEGenericBase< OutputType >::build(), libMesh::Elem::contains_point(), libMesh::System::current_local_solution, libMesh::Elem::dim(), libMesh::DofMap::dof_indices(), libMesh::System::get_dof_map(), libMesh::Elem::infinite(), libMesh::FEMap::inverse_map(), libMesh::DofMap::is_evaluable(), libMesh::libmesh_assert(), and libMesh::DofMap::variable_type().

2707 {
2708  // Ensuring that the given point is really in the element is an
2709  // expensive assert, but as long as debugging is turned on we might
2710  // as well try to catch a particularly nasty potential error
2711  libmesh_assert (e.contains_point(p));
2712 
2713  if (!sol)
2714  sol = this->current_local_solution.get();
2715 
2716  if (e.infinite())
2717  libmesh_not_implemented();
2718 
2719  // Get the dof map to get the proper indices for our computation
2720  const DofMap & dof_map = this->get_dof_map();
2721 
2722  // Make sure we can evaluate on this element.
2723  libmesh_assert (dof_map.is_evaluable(e, var));
2724 
2725  // Need dof_indices for phi[i][j]
2726  std::vector<dof_id_type> dof_indices;
2727 
2728  // Fill in the dof_indices for our element
2729  dof_map.dof_indices (&e, dof_indices, var);
2730 
2731  // Get the no of dofs associated with this point
2732  const unsigned int num_dofs = cast_int<unsigned int>
2733  (dof_indices.size());
2734 
2735  FEType fe_type = dof_map.variable_type(var);
2736 
2737  // Build a FE again so we can calculate u(p)
2738  std::unique_ptr<FEBase> fe (FEBase::build(e.dim(), fe_type));
2739 
2740  // Map the physical co-ordinates to the master co-ordinates
2741  // Build a vector of point co-ordinates to send to reinit
2742  std::vector<Point> coor(1, FEMap::inverse_map(e.dim(), &e, p));
2743 
2744  // Get the values of the shape function derivatives
2745  const std::vector<std::vector<RealTensor>> & d2phi = fe->get_d2phi();
2746 
2747  // Reinitialize the element and compute the shape function values at coor
2748  fe->reinit (&e, &coor);
2749 
2750  // Get ready to accumulate a hessian
2751  Tensor hess_u;
2752 
2753  for (unsigned int l=0; l<num_dofs; l++)
2754  {
2755  hess_u.add_scaled (d2phi[l][0], (*sol)(dof_indices[l]));
2756  }
2757 
2758  return hess_u;
2759 }
static Point inverse_map(const unsigned int dim, const Elem *elem, const Point &p, const Real tolerance=TOLERANCE, const bool secure=true, const bool extra_checks=true)
Definition: fe_map.C:1626
static std::unique_ptr< FEGenericBase > build(const unsigned int dim, const FEType &type)
Builds a specific finite element type.
libmesh_assert(ctx)
void add_scaled(const TypeTensor< T2 > &, const T &)
Add a scaled tensor to this tensor without creating a temporary.
Definition: type_tensor.h:851
NumberTensorValue Tensor
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_hessian() [3/4]

Tensor libMesh::System::point_hessian ( unsigned int  var,
const Point p,
const Elem e 
) const
inherited

Calls the version of point_hessian() which takes a reference.

This function exists only to prevent people from calling the version of point_hessian() that has a boolean third argument, which would result in unnecessary PointLocator calls.

Definition at line 2763 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::point_hessian().

2764 {
2765  libmesh_assert(e);
2766  return this->point_hessian(var, p, *e);
2767 }
libmesh_assert(ctx)
Tensor point_hessian(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2642

◆ point_hessian() [4/4]

Tensor libMesh::System::point_hessian ( unsigned int  var,
const Point p,
const NumericVector< Number > *  sol 
) const
inherited

Calls the parallel version of point_hessian().

This function exists only to prevent people from accidentally calling the version of point_hessian() that has a boolean third argument, which would result in incorrect output.

Definition at line 2771 of file system.C.

References libMesh::System::point_hessian().

2772 {
2773  return this->point_hessian(var, p, true, sol);
2774 }
Tensor point_hessian(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2642

◆ point_value() [1/4]

Number libMesh::System::point_value ( unsigned int  var,
const Point p,
const bool  insist_on_success = true,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The value of the solution variable var at the physical point p in the mesh, without knowing a priori which element contains p, using the degree of freedom coefficients in sol (or in current_local_solution if sol is left null).
Note
This function uses MeshBase::sub_point_locator(); users may or may not want to call MeshBase::clear_point_locator() afterward. Also, point_locator() is expensive (N log N for initial construction, log N for evaluations). Avoid using this function in any context where you are already looping over elements.

Because the element containing p may lie on any processor, this function is parallel-only.

By default this method expects the point to reside inside the domain and will abort if no element can be found which contains p. The optional parameter insist_on_success can be set to false to allow the method to return 0 when the point is not located.

Definition at line 2369 of file system.C.

References libMesh::Variable::active_subdomains(), TIMPI::Communicator::broadcast(), libMesh::ParallelObject::comm(), libMesh::PointLocatorBase::enable_out_of_mesh_mode(), libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), mesh, TIMPI::Communicator::min(), libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), and libMesh::System::variable().

Referenced by line_print(), main(), libMesh::System::point_value(), MeshInputTest::testCopyElementSolutionImpl(), MeshInputTest::testCopyElementVectorImpl(), MeshInputTest::testCopyNodalSolutionImpl(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), PeriodicBCTest::testPeriodicBC(), SystemsTest::testProjectCubeWithMeshFunction(), and EquationSystemsTest::testRepartitionThenReinit().

2373 {
2374  // This function must be called on every processor; there's no
2375  // telling where in the partition p falls.
2376  parallel_object_only();
2377 
2378  // And every processor had better agree about which point we're
2379  // looking for
2380 #ifndef NDEBUG
2381  libmesh_assert(this->comm().verify(p(0)));
2382 #if LIBMESH_DIM > 1
2383  libmesh_assert(this->comm().verify(p(1)));
2384 #endif
2385 #if LIBMESH_DIM > 2
2386  libmesh_assert(this->comm().verify(p(2)));
2387 #endif
2388 #endif // NDEBUG
2389 
2390  // Get a reference to the mesh object associated with the system object that calls this function
2391  const MeshBase & mesh = this->get_mesh();
2392 
2393  // Use an existing PointLocator or create a new one
2394  std::unique_ptr<PointLocatorBase> locator_ptr = mesh.sub_point_locator();
2395  PointLocatorBase & locator = *locator_ptr;
2396 
2397  if (!insist_on_success || !mesh.is_serial())
2398  locator.enable_out_of_mesh_mode();
2399 
2400  // Get a pointer to an element that contains p and allows us to
2401  // evaluate var
2402  const std::set<subdomain_id_type> & raw_subdomains =
2403  this->variable(var).active_subdomains();
2404  const std::set<subdomain_id_type> * implicit_subdomains =
2405  raw_subdomains.empty() ? nullptr : &raw_subdomains;
2406  const Elem * e = locator(p, implicit_subdomains);
2407 
2408  Number u = 0;
2409 
2410  if (e && this->get_dof_map().is_evaluable(*e, var))
2411  u = point_value(var, p, *e, sol);
2412 
2413  // If I have an element containing p, then let's let everyone know
2414  processor_id_type lowest_owner =
2415  (e && (e->processor_id() == this->processor_id())) ?
2416  this->processor_id() : this->n_processors();
2417  this->comm().min(lowest_owner);
2418 
2419  // Everybody should get their value from a processor that was able
2420  // to compute it.
2421  // If nobody admits owning the point, we have a problem.
2422  if (lowest_owner != this->n_processors())
2423  this->comm().broadcast(u, lowest_owner);
2424  else
2425  libmesh_assert(!insist_on_success);
2426 
2427  return u;
2428 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
MeshBase & mesh
Number point_value(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2369
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
uint8_t processor_id_type
processor_id_type n_processors() const
const std::set< subdomain_id_type > & active_subdomains() const
Definition: variable.h:171
void min(const T &r, T &o, Request &req) const
libmesh_assert(ctx)
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_value() [2/4]

Number libMesh::System::point_value ( unsigned int  var,
const Point p,
const Elem e,
const NumericVector< Number > *  sol = nullptr 
) const
inherited
Returns
The value of the solution variable var at the physical point p contained in local Elem e, using the degree of freedom coefficients in sol (or in current_local_solution if sol is left null).

This version of point_value can be run in serial, but assumes e is in the local mesh partition or is algebraically ghosted.

Definition at line 2430 of file system.C.

References libMesh::FEInterface::compute_data(), libMesh::Elem::contains_point(), libMesh::System::current_local_solution, libMesh::Elem::dim(), libMesh::DofMap::dof_indices(), libMesh::System::get_dof_map(), libMesh::System::get_equation_systems(), libMesh::FEMap::inverse_map(), libMesh::DofMap::is_evaluable(), libMesh::libmesh_assert(), and libMesh::DofMap::variable_type().

2434 {
2435  // Ensuring that the given point is really in the element is an
2436  // expensive assert, but as long as debugging is turned on we might
2437  // as well try to catch a particularly nasty potential error
2438  libmesh_assert (e.contains_point(p));
2439 
2440  if (!sol)
2441  sol = this->current_local_solution.get();
2442 
2443  // Get the dof map to get the proper indices for our computation
2444  const DofMap & dof_map = this->get_dof_map();
2445 
2446  // Make sure we can evaluate on this element.
2447  libmesh_assert (dof_map.is_evaluable(e, var));
2448 
2449  // Need dof_indices for phi[i][j]
2450  std::vector<dof_id_type> dof_indices;
2451 
2452  // Fill in the dof_indices for our element
2453  dof_map.dof_indices (&e, dof_indices, var);
2454 
2455  // Get the no of dofs associated with this point
2456  const unsigned int num_dofs = cast_int<unsigned int>
2457  (dof_indices.size());
2458 
2459  FEType fe_type = dof_map.variable_type(var);
2460 
2461  // Map the physical co-ordinates to the master co-ordinates
2462  Point coor = FEMap::inverse_map(e.dim(), &e, p);
2463 
2464  // get the shape function value via the FEInterface to also handle the case
2465  // of infinite elements correctly, the shape function is not fe->phi().
2466  FEComputeData fe_data(this->get_equation_systems(), coor);
2467  FEInterface::compute_data(e.dim(), fe_type, &e, fe_data);
2468 
2469  // Get ready to accumulate a value
2470  Number u = 0;
2471 
2472  for (unsigned int l=0; l<num_dofs; l++)
2473  {
2474  u += fe_data.shape[l] * (*sol)(dof_indices[l]);
2475  }
2476 
2477  return u;
2478 }
static Point inverse_map(const unsigned int dim, const Elem *elem, const Point &p, const Real tolerance=TOLERANCE, const bool secure=true, const bool extra_checks=true)
Definition: fe_map.C:1626
const EquationSystems & get_equation_systems() const
Definition: system.h:730
static void compute_data(const unsigned int dim, const FEType &fe_t, const Elem *elem, FEComputeData &data)
Lets the appropriate child of FEBase compute the requested data for the input specified in data...
libmesh_assert(ctx)
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ point_value() [3/4]

Number libMesh::System::point_value ( unsigned int  var,
const Point p,
const Elem e 
) const
inherited

Calls the version of point_value() which takes a reference.

This function exists only to prevent people from calling the version of point_value() that has a boolean third argument, which would result in unnecessary PointLocator calls.

Definition at line 2482 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::point_value().

2483 {
2484  libmesh_assert(e);
2485  return this->point_value(var, p, *e);
2486 }
Number point_value(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2369
libmesh_assert(ctx)

◆ point_value() [4/4]

Number libMesh::System::point_value ( unsigned int  var,
const Point p,
const NumericVector< Number > *  sol 
) const
inherited

Calls the parallel version of point_value().

This function exists only to prevent people from accidentally calling the version of point_value() that has a boolean third argument, which would result in incorrect output.

Definition at line 2490 of file system.C.

References libMesh::System::point_value().

2491 {
2492  return this->point_value(var, p, true, sol);
2493 }
Number point_value(unsigned int var, const Point &p, const bool insist_on_success=true, const NumericVector< Number > *sol=nullptr) const
Definition: system.C:2369

◆ print_discrete_parameter_values()

void libMesh::RBParametrized::print_discrete_parameter_values ( ) const
inherited

Print out all the discrete parameter values.

Definition at line 377 of file rb_parametrized.C.

References libMesh::RBParametrized::get_discrete_parameter_values(), libMesh::Quality::name(), libMesh::out, and value.

Referenced by print_info(), libMesh::RBEIMConstruction::print_info(), and libMesh::RBConstruction::print_info().

378 {
379  for (const auto & [name, values] : get_discrete_parameter_values())
380  {
381  libMesh::out << "Discrete parameter " << name << ", values: ";
382 
383  for (const auto & value : values)
384  libMesh::out << value << " ";
385  libMesh::out << std::endl;
386  }
387 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
const std::map< std::string, std::vector< Real > > & get_discrete_parameter_values() const
Get a const reference to the discrete parameter values.
OStreamProxy out
static const bool value
Definition: xdr_io.C:54

◆ print_info() [1/3]

void libMesh::ReferenceCounter::print_info ( std::ostream &  out_stream = libMesh::out)
staticinherited

Prints the reference information, by default to libMesh::out.

Definition at line 81 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().

Referenced by libMesh::LibMeshInit::~LibMeshInit().

82 {
84  out_stream << ReferenceCounter::get_info();
85 }
static std::string get_info()
Gets a string containing the reference information.
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ print_info() [2/3]

void libMesh::ReferenceCounter::print_info ( std::ostream &  out_stream = libMesh::out)
staticinherited

Prints the reference information, by default to libMesh::out.

Definition at line 81 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().

Referenced by libMesh::LibMeshInit::~LibMeshInit().

82 {
84  out_stream << ReferenceCounter::get_info();
85 }
static std::string get_info()
Gets a string containing the reference information.
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ print_info() [3/3]

void libMesh::RBSCMConstruction::print_info ( )
virtual

Print out info that describes the current setup of this RBSCMConstruction.

Definition at line 161 of file rb_scm_construction.C.

References libMesh::RBThetaExpansion::get_n_A_terms(), libMesh::RBParametrized::get_n_params(), libMesh::RBConstructionBase< CondensedEigenSystem >::get_n_training_samples(), libMesh::RBParametrized::get_parameter_max(), libMesh::RBParametrized::get_parameter_min(), libMesh::RBParametrized::get_parameters(), get_rb_theta_expansion(), get_SCM_training_tolerance(), libMesh::System::name(), libMesh::out, libMesh::RBParametrized::print_discrete_parameter_values(), and rb_scm_eval.

162 {
163  // Print out info that describes the current setup
164  libMesh::out << std::endl << "RBSCMConstruction parameters:" << std::endl;
165  libMesh::out << "system name: " << this->name() << std::endl;
166  libMesh::out << "SCM Greedy tolerance: " << get_SCM_training_tolerance() << std::endl;
167  if (rb_scm_eval)
168  {
169  libMesh::out << "A_q operators attached: " << get_rb_theta_expansion().get_n_A_terms() << std::endl;
170  }
171  else
172  {
173  libMesh::out << "RBThetaExpansion member is not set yet" << std::endl;
174  }
175  libMesh::out << "Number of parameters: " << get_n_params() << std::endl;
176  for (const auto & pr : get_parameters())
177  {
178  const std::string & param_name = pr.first;
179  libMesh::out << "Parameter " << param_name
180  << ": Min = " << get_parameter_min(param_name)
181  << ", Max = " << get_parameter_max(param_name) << std::endl;
182  }
184  libMesh::out << "n_training_samples: " << get_n_training_samples() << std::endl;
185  libMesh::out << std::endl;
186 }
Real get_parameter_min(const std::string &param_name) const
Get minimum allowable value of parameter param_name.
Real get_parameter_max(const std::string &param_name) const
Get maximum allowable value of parameter param_name.
Real get_SCM_training_tolerance() const
Get/set SCM_training_tolerance: tolerance for SCM greedy.
unsigned int get_n_A_terms() const
Get Q_a, the number of terms in the affine expansion for the bilinear form.
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...
const RBParameters & get_parameters() const
Get the current parameters.
numeric_index_type get_n_training_samples() const
Get the number of global training samples.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object.
OStreamProxy out
const std::string & name() const
Definition: system.h:2261
unsigned int get_n_params() const
Get the number of parameters.
void print_discrete_parameter_values() const
Print out all the discrete parameter values.

◆ print_parameters()

void libMesh::RBParametrized::print_parameters ( ) const
inherited

Print the current parameters.

Definition at line 190 of file rb_parametrized.C.

References libMesh::RBParametrized::get_parameters(), libMesh::RBParametrized::parameters_initialized, and libMesh::RBParameters::print().

Referenced by libMesh::RBEIMConstruction::train_eim_approximation_with_greedy(), and libMesh::RBConstruction::train_reduced_basis_with_greedy().

191 {
192  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::print_current_parameters");
193 
194  get_parameters().print();
195 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
void print() const
Print the parameters.
const RBParameters & get_parameters() const
Get the current parameters.

◆ process_parameters_file()

void libMesh::RBSCMConstruction::process_parameters_file ( const std::string &  parameters_filename)
virtual

Read in the parameters from file specified by parameters_filename and set the this system's member variables accordingly.

Definition at line 89 of file rb_scm_construction.C.

References libMesh::RBParametrized::get_parameters(), libMesh::RBParametrized::get_parameters_max(), libMesh::RBParametrized::get_parameters_min(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBConstructionBase< CondensedEigenSystem >::initialize_training_parameters(), libMesh::Real, SCM_training_tolerance, set_SCM_training_tolerance(), libMesh::RBConstructionBase< CondensedEigenSystem >::set_training_random_seed(), and libMesh::RBParameters::set_value().

90 {
91  // First read in data from parameters_filename
92  GetPot infile(parameters_filename);
93  const unsigned int n_training_samples = infile("n_training_samples",1);
94  const bool deterministic_training = infile("deterministic_training",false);
95 
96  // Read in training_parameters_random_seed value. This is used to
97  // seed the RNG when picking the training parameters. By default the
98  // value is -1, which means use std::time to seed the RNG.
99  unsigned int training_parameters_random_seed_in = static_cast<unsigned int>(-1);
100  training_parameters_random_seed_in = infile("training_parameters_random_seed",
101  training_parameters_random_seed_in);
102  set_training_random_seed(static_cast<int>(training_parameters_random_seed_in));
103 
104  // SCM Greedy termination tolerance
105  const Real SCM_training_tolerance_in = infile("SCM_training_tolerance", SCM_training_tolerance);
106  set_SCM_training_tolerance(SCM_training_tolerance_in);
107 
108  // Initialize the parameter ranges and the parameters themselves
109  unsigned int n_continuous_parameters = infile.vector_variable_size("parameter_names");
110  RBParameters mu_min_in;
111  RBParameters mu_max_in;
112  for (unsigned int i=0; i<n_continuous_parameters; i++)
113  {
114  // Read in the parameter names
115  std::string param_name = infile("parameter_names", "NONE", i);
116 
117  {
118  Real min_val = infile(param_name, 0., 0);
119  mu_min_in.set_value(param_name, min_val);
120  }
121 
122  {
123  Real max_val = infile(param_name, 0., 1);
124  mu_max_in.set_value(param_name, max_val);
125  }
126  }
127 
128  std::map<std::string, std::vector<Real>> discrete_parameter_values_in;
129 
130  unsigned int n_discrete_parameters = infile.vector_variable_size("discrete_parameter_names");
131  for (unsigned int i=0; i<n_discrete_parameters; i++)
132  {
133  std::string param_name = infile("discrete_parameter_names", "NONE", i);
134 
135  unsigned int n_vals_for_param = infile.vector_variable_size(param_name);
136  std::vector<Real> vals_for_param(n_vals_for_param);
137  for (unsigned int j=0; j != n_vals_for_param; j++)
138  vals_for_param[j] = infile(param_name, 0., j);
139 
140  discrete_parameter_values_in[param_name] = vals_for_param;
141  }
142 
143  initialize_parameters(mu_min_in, mu_max_in, discrete_parameter_values_in);
144 
145  std::map<std::string,bool> log_scaling;
146  const RBParameters & mu = get_parameters();
147  unsigned int i=0;
148  for (const auto & pr : mu)
149  {
150  const std::string & param_name = pr.first;
151  log_scaling[param_name] = static_cast<bool>(infile("log_scaling", 0, i++));
152  }
153 
155  this->get_parameters_max(),
156  n_training_samples,
157  log_scaling,
158  deterministic_training); // use deterministic parameters
159 }
const RBParameters & get_parameters_max() const
Get an RBParameters object that specifies the maximum allowable value for each parameter.
Real SCM_training_tolerance
Tolerance which controls when to terminate the SCM Greedy.
virtual void initialize_training_parameters(const RBParameters &mu_min, const RBParameters &mu_max, const unsigned int n_global_training_samples, const std::map< std::string, bool > &log_param_scale, const bool deterministic=true)
Initialize the parameter ranges and indicate whether deterministic or random training parameters shou...
void set_training_random_seed(int seed)
Set the seed that is used to randomly generate training parameters.
const RBParameters & get_parameters_min() const
Get an RBParameters object that specifies the minimum allowable value for each parameter.
const RBParameters & get_parameters() const
Get the current parameters.
void set_SCM_training_tolerance(Real SCM_training_tolerance_in)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void initialize_parameters(const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
Initialize the parameter ranges and set current_parameters.

◆ processor_id()

processor_id_type libMesh::ParallelObject::processor_id ( ) const
inlineinherited
Returns
The rank of this processor in the group.

Definition at line 114 of file parallel_object.h.

References libMesh::ParallelObject::_communicator, and TIMPI::Communicator::rank().

Referenced by libMesh::BoundaryInfo::_find_id_maps(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::DistributedMesh::add_elem(), libMesh::BoundaryInfo::add_elements(), libMesh::DofMap::add_neighbors_to_send_list(), libMesh::DistributedMesh::add_node(), libMesh::MeshTools::Modification::all_tri(), libMesh::DofMap::allgather_recursive_constraints(), libMesh::FEMSystem::assembly(), libMesh::Nemesis_IO::assert_symmetric_cmaps(), libMesh::Partitioner::assign_partitioning(), libMesh::Nemesis_IO_Helper::build_element_and_node_maps(), libMesh::Partitioner::build_graph(), libMesh::InfElemBuilder::build_inf_elem(), libMesh::BoundaryInfo::build_node_list_from_side_list(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::DistributedMesh::clear(), libMesh::DistributedMesh::clear_elems(), libMesh::ExodusII_IO_Helper::close(), libMesh::Nemesis_IO_Helper::compute_border_node_ids(), libMesh::Nemesis_IO_Helper::compute_communication_map_parameters(), libMesh::Nemesis_IO_Helper::compute_internal_and_border_elems_and_internal_nodes(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::Nemesis_IO_Helper::compute_node_communication_maps(), libMesh::Nemesis_IO_Helper::compute_num_global_elem_blocks(), libMesh::Nemesis_IO_Helper::compute_num_global_nodesets(), libMesh::Nemesis_IO_Helper::compute_num_global_sidesets(), libMesh::Nemesis_IO_Helper::construct_nemesis_filename(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), libMesh::MeshTools::correct_node_proc_ids(), libMesh::ExodusII_IO_Helper::create(), libMesh::DistributedMesh::delete_elem(), libMesh::MeshCommunication::delete_remote_elements(), libMesh::DofMap::distribute_dofs(), libMesh::DofMap::distribute_local_dofs_node_major(), libMesh::DofMap::distribute_local_dofs_var_major(), libMesh::DofMap::distribute_scalar_dofs(), libMesh::DistributedMesh::DistributedMesh(), libMesh::DofMap::end_dof(), libMesh::DofMap::end_old_dof(), libMesh::EnsightIO::EnsightIO(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubFunctor::find_dofs_to_send(), libMesh::MeshFunction::find_element(), libMesh::MeshFunction::find_elements(), libMesh::UnstructuredMesh::find_neighbors(), libMesh::DofMap::first_dof(), libMesh::DofMap::first_old_dof(), libMesh::RBEIMEvaluation::gather_bfs(), libMesh::Nemesis_IO_Helper::get_cmap_params(), libMesh::Nemesis_IO_Helper::get_eb_info_global(), libMesh::Nemesis_IO_Helper::get_elem_cmap(), libMesh::Nemesis_IO_Helper::get_elem_map(), libMesh::MeshBase::get_info(), libMesh::DofMap::get_info(), libMesh::Nemesis_IO_Helper::get_init_global(), libMesh::Nemesis_IO_Helper::get_init_info(), libMesh::Nemesis_IO_Helper::get_loadbal_param(), libMesh::DofMap::get_local_constraints(), libMesh::Nemesis_IO_Helper::get_node_cmap(), libMesh::Nemesis_IO_Helper::get_node_map(), libMesh::Nemesis_IO_Helper::get_ns_param_global(), libMesh::Nemesis_IO_Helper::get_ss_param_global(), libMesh::SparsityPattern::Build::handle_vi_vj(), libMesh::LaplaceMeshSmoother::init(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), HeatSystem::init_data(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::ExodusII_IO_Helper::initialize_element_variables(), libMesh::ExodusII_IO_Helper::initialize_global_variables(), libMesh::ExodusII_IO_Helper::initialize_nodal_variables(), libMesh::DistributedMesh::insert_elem(), libMesh::DofMap::is_evaluable(), libMesh::SparsityPattern::Build::join(), libMesh::TransientRBEvaluation::legacy_write_offline_data_to_files(), libMesh::RBSCMEvaluation::legacy_write_offline_data_to_files(), libMesh::RBEvaluation::legacy_write_offline_data_to_files(), libMesh::MeshTools::libmesh_assert_consistent_distributed(), libMesh::MeshTools::libmesh_assert_consistent_distributed_nodes(), libMesh::MeshTools::libmesh_assert_contiguous_dof_ids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_object_ids(), libMesh::DofMap::local_variable_indices(), main(), libMesh::MeshRefinement::make_coarsening_compatible(), AugmentSparsityOnInterface::mesh_reinit(), libMesh::TriangulatorInterface::MeshedHole::MeshedHole(), libMesh::MeshBase::n_active_local_elem(), libMesh::BoundaryInfo::n_boundary_conds(), libMesh::BoundaryInfo::n_edge_conds(), libMesh::DofMap::n_local_dofs(), libMesh::System::n_local_dofs(), libMesh::MeshBase::n_local_elem(), libMesh::MeshBase::n_local_nodes(), libMesh::BoundaryInfo::n_nodeset_conds(), libMesh::BoundaryInfo::n_shellface_conds(), libMesh::RBEIMEvaluation::node_gather_bfs(), libMesh::SparsityPattern::Build::operator()(), libMesh::DistributedMesh::own_node(), libMesh::BoundaryInfo::parallel_sync_node_ids(), libMesh::BoundaryInfo::parallel_sync_side_ids(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::DofMap::print_dof_constraints(), libMesh::DofMap::process_mesh_constraint_rows(), libMesh::Nemesis_IO_Helper::put_cmap_params(), libMesh::Nemesis_IO_Helper::put_elem_cmap(), libMesh::Nemesis_IO_Helper::put_elem_map(), libMesh::Nemesis_IO_Helper::put_loadbal_param(), libMesh::Nemesis_IO_Helper::put_node_cmap(), libMesh::Nemesis_IO_Helper::put_node_map(), libMesh::NameBasedIO::read(), libMesh::Nemesis_IO::read(), libMesh::XdrIO::read(), libMesh::CheckpointIO::read(), libMesh::EquationSystems::read(), libMesh::ExodusII_IO_Helper::read_elem_num_map(), libMesh::ExodusII_IO_Helper::read_global_values(), libMesh::ExodusII_IO::read_header(), libMesh::CheckpointIO::read_header(), libMesh::XdrIO::read_header(), libMesh::System::read_header(), libMesh::System::read_legacy_data(), libMesh::DynaIO::read_mesh(), libMesh::ExodusII_IO_Helper::read_node_num_map(), libMesh::System::read_parallel_data(), libMesh::TransientRBConstruction::read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::System::read_SCALAR_dofs(), libMesh::XdrIO::read_serialized_bc_names(), libMesh::XdrIO::read_serialized_bcs_helper(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::XdrIO::read_serialized_connectivity(), libMesh::System::read_serialized_data(), libMesh::XdrIO::read_serialized_nodes(), libMesh::XdrIO::read_serialized_nodesets(), libMesh::XdrIO::read_serialized_subdomain_names(), libMesh::System::read_serialized_vector(), libMesh::System::read_serialized_vectors(), libMesh::Nemesis_IO_Helper::read_var_names_impl(), libMesh::DistributedMesh::renumber_dof_objects(), libMesh::DistributedMesh::renumber_nodes_and_elements(), libMesh::DofMap::scatter_constraints(), libMesh::CheckpointIO::select_split_config(), libMesh::DistributedMesh::set_next_unique_id(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::RBEIMEvaluation::side_gather_bfs(), ExodusTest< elem_type >::test_read_gold(), ExodusTest< elem_type >::test_write(), MeshInputTest::testAbaqusRead(), MeshInputTest::testCopyElementSolutionImpl(), MeshInputTest::testCopyElementVectorImpl(), MeshInputTest::testCopyNodalSolutionImpl(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), MeshInputTest::testDynaFileMappings(), MeshInputTest::testDynaNoSplines(), MeshInputTest::testDynaReadElem(), MeshInputTest::testDynaReadPatch(), MeshInputTest::testExodusFileMappings(), MeshInputTest::testExodusIGASidesets(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), MeshInputTest::testLowOrderEdgeBlocks(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), BoundaryInfoTest::testShellFaceConstraints(), MeshInputTest::testSingleElementImpl(), WriteVecAndScalar::testSolution(), CheckpointIOTest::testSplitter(), MeshInputTest::testTetgenIO(), libMesh::MeshTools::total_weight(), libMesh::MeshRefinement::uniformly_coarsen(), libMesh::DistributedMesh::update_parallel_id_counts(), libMesh::DTKAdapter::update_variable_values(), libMesh::NameBasedIO::write(), libMesh::XdrIO::write(), libMesh::CheckpointIO::write(), libMesh::EquationSystems::write(), libMesh::GMVIO::write_discontinuous_gmv(), libMesh::ExodusII_IO::write_element_data(), libMesh::ExodusII_IO_Helper::write_element_values(), libMesh::ExodusII_IO_Helper::write_element_values_element_major(), libMesh::ExodusII_IO_Helper::write_elements(), libMesh::ExodusII_IO_Helper::write_elemset_data(), libMesh::ExodusII_IO_Helper::write_elemsets(), libMesh::ExodusII_IO::write_global_data(), libMesh::ExodusII_IO_Helper::write_global_values(), libMesh::System::write_header(), libMesh::ExodusII_IO::write_information_records(), libMesh::ExodusII_IO_Helper::write_information_records(), libMesh::ExodusII_IO_Helper::write_nodal_coordinates(), libMesh::UCDIO::write_nodal_data(), libMesh::VTKIO::write_nodal_data(), libMesh::ExodusII_IO::write_nodal_data(), libMesh::ExodusII_IO::write_nodal_data_common(), libMesh::ExodusII_IO::write_nodal_data_discontinuous(), libMesh::ExodusII_IO_Helper::write_nodal_values(), libMesh::ExodusII_IO_Helper::write_nodeset_data(), libMesh::Nemesis_IO_Helper::write_nodesets(), libMesh::ExodusII_IO_Helper::write_nodesets(), libMesh::RBEIMEvaluation::write_out_interior_basis_functions(), libMesh::RBEIMEvaluation::write_out_node_basis_functions(), libMesh::RBEIMEvaluation::write_out_side_basis_functions(), write_output_solvedata(), libMesh::System::write_parallel_data(), libMesh::RBConstruction::write_riesz_representors_to_files(), libMesh::System::write_SCALAR_dofs(), libMesh::XdrIO::write_serialized_bc_names(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::System::write_serialized_data(), libMesh::XdrIO::write_serialized_nodes(), libMesh::XdrIO::write_serialized_nodesets(), libMesh::XdrIO::write_serialized_subdomain_names(), libMesh::System::write_serialized_vector(), libMesh::System::write_serialized_vectors(), libMesh::ExodusII_IO_Helper::write_sideset_data(), libMesh::Nemesis_IO_Helper::write_sidesets(), libMesh::ExodusII_IO_Helper::write_sidesets(), libMesh::ExodusII_IO::write_timestep(), libMesh::ExodusII_IO_Helper::write_timestep(), and libMesh::ExodusII_IO::write_timestep_discontinuous().

115  { return cast_int<processor_id_type>(_communicator.rank()); }
processor_id_type rank() const
const Parallel::Communicator & _communicator

◆ project_solution() [1/3]

void libMesh::System::project_solution ( FunctionBase< Number > *  f,
FunctionBase< Gradient > *  g = nullptr 
) const
inherited

Projects arbitrary functions onto the current solution.

This method projects an arbitrary function onto the solution via L2 projections and nodal interpolations on each element.

The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Definition at line 1032 of file system_projection.C.

Referenced by init_sys(), initialize(), main(), SlitMeshRefinedSystemTest::setUp(), FETestBase< order, family, elem_type, 1 >::setUp(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), MeshFunctionTest::test_subdomain_id_sets(), MeshInputTest::testCopyElementSolutionImpl(), MeshInputTest::testCopyNodalSolutionImpl(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), SystemsTest::testProjectCubeWithMeshFunction(), MeshInputTest::testProjectionRegression(), EquationSystemsTest::testRepartitionThenReinit(), and libMesh::MeshfreeSolutionTransfer::transfer().

1034 {
1035  this->project_vector(*solution, f, g);
1036 
1037  solution->localize(*current_local_solution, _dof_map->get_send_list());
1038 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_solution() [2/3]

void libMesh::System::project_solution ( FEMFunctionBase< Number > *  f,
FEMFunctionBase< Gradient > *  g = nullptr 
) const
inherited

Projects arbitrary functions onto the current solution.

This method projects an arbitrary function onto the solution via L2 projections and nodal interpolations on each element.

The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Definition at line 1045 of file system_projection.C.

1047 {
1048  this->project_vector(*solution, f, g);
1049 
1050  solution->localize(*current_local_solution, _dof_map->get_send_list());
1051 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_solution() [3/3]

void libMesh::System::project_solution ( ValueFunctionPointer  fptr,
GradientFunctionPointer  gptr,
const Parameters parameters 
) const
inherited

This method projects an arbitrary function onto the solution via L2 projections and nodal interpolations on each element.

Definition at line 1018 of file system_projection.C.

References fptr(), and gptr().

1021 {
1022  WrappedFunction<Number> f(*this, fptr, &parameters);
1023  WrappedFunction<Gradient> g(*this, gptr, &parameters);
1024  this->project_solution(&f, &g);
1025 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
void project_solution(FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr) const
Projects arbitrary functions onto the current solution.
Gradient gptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:95

◆ project_solution_on_reinit()

bool& libMesh::System::project_solution_on_reinit ( void  )
inlineinherited

Tells the System whether or not to project the solution vector onto new grids when the system is reinitialized.

The solution will be projected unless project_solution_on_reinit() = false is called.

Definition at line 821 of file system.h.

References libMesh::System::_solution_projection.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), and libMesh::MemoryHistoryData::store_vectors().

822  { return _solution_projection; }
bool _solution_projection
Holds true if the solution vector should be projected onto a changed grid, false if it should be zero...
Definition: system.h:2198

◆ project_vector() [1/5]

void libMesh::System::project_vector ( NumericVector< Number > &  new_vector,
FunctionBase< Number > *  f,
FunctionBase< Gradient > *  g = nullptr,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary function via L2 projections and nodal interpolations on each element.

The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1073 of file system_projection.C.

References libMesh::libmesh_assert().

Referenced by main(), libMesh::NewmarkSolver::project_initial_accel(), libMesh::SecondOrderUnsteadySolver::project_initial_rate(), libMesh::InterMeshProjection::project_system_vectors(), and libMesh::System::restrict_vectors().

1077 {
1078  LOG_SCOPE ("project_vector(FunctionBase)", "System");
1079 
1080  libmesh_assert(f);
1081 
1082  WrappedFunctor<Number> f_fem(*f);
1083 
1084  if (g)
1085  {
1086  WrappedFunctor<Gradient> g_fem(*g);
1087 
1088  this->project_vector(new_vector, &f_fem, &g_fem, is_adjoint);
1089  }
1090  else
1091  this->project_vector(new_vector, &f_fem, nullptr, is_adjoint);
1092 }
libmesh_assert(ctx)
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_vector() [2/5]

void libMesh::System::project_vector ( NumericVector< Number > &  new_vector,
FEMFunctionBase< Number > *  f,
FEMFunctionBase< Gradient > *  g = nullptr,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary function via L2 projections and nodal interpolations on each element.

The function value f and its gradient g are user-provided cloneable functors. A gradient g is only required/used for projecting onto finite element spaces with continuous derivatives. If non-default Parameters are to be used, they can be provided in the parameters argument.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1099 of file system_projection.C.

References libMesh::NumericVector< T >::close(), libMesh::FEMFunctionBase< Output >::component(), libMesh::FEType::family, libMesh::Utility::iota(), libMesh::libmesh_assert(), libMesh::libmesh_ignore(), libMesh::make_range(), n_vars, libMesh::NODEELEM, libMesh::FEMContext::pre_fe_reinit(), libMesh::RATIONAL_BERNSTEIN, libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), libMesh::NumericVector< T >::set(), and libMesh::Variable::type().

1103 {
1104  LOG_SCOPE ("project_fem_vector()", "System");
1105 
1106  libmesh_assert (f);
1107 
1108  ConstElemRange active_local_range
1109  (this->get_mesh().active_local_elements_begin(),
1110  this->get_mesh().active_local_elements_end() );
1111 
1112  VectorSetAction<Number> setter(new_vector);
1113 
1114  const unsigned int n_variables = this->n_vars();
1115 
1116  std::vector<unsigned int> vars(n_variables);
1117  std::iota(vars.begin(), vars.end(), 0);
1118 
1119  // Use a typedef to make the calling sequence for parallel_for() a bit more readable
1120  typedef
1121  GenericProjector<FEMFunctionWrapper<Number>, FEMFunctionWrapper<Gradient>,
1122  Number, VectorSetAction<Number>> FEMProjector;
1123 
1124  FEMFunctionWrapper<Number> fw(*f);
1125 
1126  if (g)
1127  {
1128  FEMFunctionWrapper<Gradient> gw(*g);
1129 
1130  FEMProjector projector(*this, fw, &gw, setter, vars);
1131  projector.project(active_local_range);
1132  }
1133  else
1134  {
1135  FEMProjector projector(*this, fw, nullptr, setter, vars);
1136  projector.project(active_local_range);
1137  }
1138 
1139  // Also, load values into the SCALAR dofs
1140  // Note: We assume that all SCALAR dofs are on the
1141  // processor with highest ID
1142  if (this->processor_id() == (this->n_processors()-1))
1143  {
1144  // FIXME: Do we want to first check for SCALAR vars before building this? [PB]
1145  FEMContext context( *this );
1146 
1147  const DofMap & dof_map = this->get_dof_map();
1148  for (auto var : make_range(this->n_vars()))
1149  if (this->variable(var).type().family == SCALAR)
1150  {
1151  // FIXME: We reinit with an arbitrary element in case the user
1152  // doesn't override FEMFunctionBase::component. Is there
1153  // any use case we're missing? [PB]
1154  context.pre_fe_reinit(*this, *(this->get_mesh().active_local_elements_begin()));
1155 
1156  std::vector<dof_id_type> SCALAR_indices;
1157  dof_map.SCALAR_dof_indices (SCALAR_indices, var);
1158  const unsigned int n_SCALAR_dofs =
1159  cast_int<unsigned int>(SCALAR_indices.size());
1160 
1161  for (unsigned int i=0; i<n_SCALAR_dofs; i++)
1162  {
1163  const dof_id_type global_index = SCALAR_indices[i];
1164  const unsigned int component_index =
1165  this->variable_scalar_number(var,i);
1166 
1167  new_vector.set(global_index, f->component(context, component_index, Point(), this->time));
1168  }
1169  }
1170  }
1171 
1172  new_vector.close();
1173 
1174  // Look for spline bases, in which case we need to backtrack
1175  // to calculate the spline DoF values.
1176  std::vector<const Variable *> rational_vars;
1177  for (auto varnum : vars)
1178  {
1179  const Variable & var = this->get_dof_map().variable(varnum);
1180  if (var.type().family == RATIONAL_BERNSTEIN)
1181  rational_vars.push_back(&var);
1182  }
1183 
1184  // Okay, but are we really using any *spline* bases, or just
1185  // unconstrained rational bases?
1186  bool using_spline_bases = false;
1187  if (!rational_vars.empty())
1188  {
1189  // Look for a spline node: a NodeElem with a rational variable
1190  // on it.
1191  for (auto & elem : active_local_range)
1192  if (elem->type() == NODEELEM)
1193  for (auto rational_var : rational_vars)
1194  if (rational_var->active_on_subdomain(elem->subdomain_id()))
1195  {
1196  using_spline_bases = true;
1197  goto checked_on_splines;
1198  }
1199  }
1200 
1201 checked_on_splines:
1202 
1203  // Not every processor may have a NodeElem, especially while
1204  // we're not partitioning them efficiently yet.
1205  this->comm().max(using_spline_bases);
1206 
1207  if (using_spline_bases)
1208  this->solve_for_unconstrained_dofs(new_vector, is_adjoint);
1209 
1210 #ifdef LIBMESH_ENABLE_CONSTRAINTS
1211  if (is_adjoint == -1)
1212  this->get_dof_map().enforce_constraints_exactly(*this, &new_vector);
1213  else if (is_adjoint >= 0)
1215  is_adjoint);
1216 #else
1217  libmesh_ignore(is_adjoint);
1218 #endif
1219 }
Real time
For time-dependent problems, this is the time t at the beginning of the current timestep.
Definition: system.h:1595
unsigned int variable_scalar_number(std::string_view var, unsigned int component) const
Definition: system.h:2408
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
void iota(ForwardIter first, ForwardIter last, T value)
Utility::iota was created back when std::iota was just an SGI STL extension.
Definition: utility.h:229
StoredRange< MeshBase::const_element_iterator, const Elem * > ConstElemRange
Definition: elem_range.h:34
void enforce_adjoint_constraints_exactly(NumericVector< Number > &v, unsigned int q) const
Heterogeneously constrains the numeric vector v, which represents an adjoint solution defined on the ...
Definition: dof_map.h:2278
processor_id_type n_processors() const
void libmesh_ignore(const Args &...)
const Variable & variable(const unsigned int c) const
Definition: dof_map.h:2114
libmesh_assert(ctx)
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
void max(const T &r, T &o, Request &req) const
virtual Output component(const FEMContext &, unsigned int i, const Point &p, Real time=0.)
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
virtual void set(const numeric_index_type i, const T value)=0
Sets v(i) = value.
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293
void solve_for_unconstrained_dofs(NumericVector< Number > &, int is_adjoint=-1) const
uint8_t dof_id_type
Definition: id_types.h:67
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274

◆ project_vector() [3/5]

void libMesh::System::project_vector ( ValueFunctionPointer  fptr,
GradientFunctionPointer  gptr,
const Parameters parameters,
NumericVector< Number > &  new_vector,
int  is_adjoint = -1 
) const
inherited

Projects arbitrary functions onto a vector of degree of freedom values for the current system.

This method projects an arbitrary function via L2 projections and nodal interpolations on each element.

The function value fptr and its gradient gptr are represented by function pointers. A gradient gptr is only required/used for projecting onto finite element spaces with continuous derivatives.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 1058 of file system_projection.C.

References fptr(), and gptr().

1063 {
1064  WrappedFunction<Number> f(*this, fptr, &parameters);
1065  WrappedFunction<Gradient> g(*this, gptr, &parameters);
1066  this->project_vector(new_vector, &f, &g, is_adjoint);
1067 }
Number fptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:80
Gradient gptr(const Point &p, const Parameters &, const std::string &libmesh_dbg_var(sys_name), const std::string &unknown_name)
Definition: projection.C:95
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_vector() [4/5]

void libMesh::System::project_vector ( NumericVector< Number > &  vector,
int  is_adjoint = -1 
) const
protectedinherited

Projects the vector defined on the old mesh onto the new mesh.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

Definition at line 247 of file system_projection.C.

References libMesh::NumericVector< T >::clone().

249 {
250  // Create a copy of the vector, which currently
251  // contains the old data.
252  std::unique_ptr<NumericVector<Number>>
253  old_vector (vector.clone());
254 
255  // Project the old vector to the new vector
256  this->project_vector (*old_vector, vector, is_adjoint);
257 }
virtual std::unique_ptr< NumericVector< T > > clone() const =0
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...

◆ project_vector() [5/5]

void libMesh::System::project_vector ( const NumericVector< Number > &  old_v,
NumericVector< Number > &  new_v,
int  is_adjoint = -1 
) const
protectedinherited

Projects the vector defined on the old mesh onto the new mesh.

This method projects the vector via L2 projections or nodal interpolations on each element.

The original vector is unchanged and the new vector is passed through the second argument.

Constrain the new vector using the requested adjoint rather than primal constraints if is_adjoint is non-negative.

This method projects a solution from an old mesh to a current, refined mesh. The input vector old_v gives the solution on the old mesh, while the new_v gives the solution (to be computed) on the new mesh.

Definition at line 265 of file system_projection.C.

References libMesh::NumericVector< T >::clear(), libMesh::NumericVector< T >::close(), libMesh::NumericVector< T >::get(), libMesh::GHOSTED, libMesh::index_range(), libMesh::NumericVector< T >::init(), libMesh::Utility::iota(), libMesh::libmesh_assert(), libMesh::libmesh_ignore(), libMesh::NumericVector< T >::local_size(), libMesh::NumericVector< T >::localize(), libMesh::make_range(), n_vars, libMesh::PARALLEL, libMesh::Threads::parallel_reduce(), libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), libMesh::BuildProjectionList::send_list, libMesh::SERIAL, libMesh::NumericVector< T >::set(), libMesh::NumericVector< T >::size(), libMesh::NumericVector< T >::type(), libMesh::TYPE_SCALAR, and libMesh::BuildProjectionList::unique().

268 {
269  LOG_SCOPE ("project_vector(old,new)", "System");
270 
277  new_v.clear();
278 
279 #ifdef LIBMESH_ENABLE_AMR
280 
281  // Resize the new vector and get a serial version.
282  NumericVector<Number> * new_vector_ptr = nullptr;
283  std::unique_ptr<NumericVector<Number>> new_vector_built;
284  NumericVector<Number> * local_old_vector;
285  std::unique_ptr<NumericVector<Number>> local_old_vector_built;
286  const NumericVector<Number> * old_vector_ptr = nullptr;
287 
288  ConstElemRange active_local_elem_range
289  (this->get_mesh().active_local_elements_begin(),
290  this->get_mesh().active_local_elements_end());
291 
292  // If the old vector was uniprocessor, make the new
293  // vector uniprocessor
294  if (old_v.type() == SERIAL)
295  {
296  new_v.init (this->n_dofs(), false, SERIAL);
297  new_vector_ptr = &new_v;
298  old_vector_ptr = &old_v;
299  }
300 
301  // Otherwise it is a parallel, distributed vector, which
302  // we need to localize.
303  else if (old_v.type() == PARALLEL)
304  {
305  // Build a send list for efficient localization
306  BuildProjectionList projection_list(*this);
307  Threads::parallel_reduce (active_local_elem_range,
308  projection_list);
309 
310  // Create a sorted, unique send_list
311  projection_list.unique();
312 
313  new_v.init (this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
314  new_vector_built = NumericVector<Number>::build(this->comm());
315  local_old_vector_built = NumericVector<Number>::build(this->comm());
316  new_vector_ptr = new_vector_built.get();
317  local_old_vector = local_old_vector_built.get();
318  new_vector_ptr->init(this->n_dofs(), this->n_local_dofs(),
319  this->get_dof_map().get_send_list(), false,
320  GHOSTED);
321  local_old_vector->init(old_v.size(), old_v.local_size(),
322  projection_list.send_list, false, GHOSTED);
323  old_v.localize(*local_old_vector, projection_list.send_list);
324  local_old_vector->close();
325  old_vector_ptr = local_old_vector;
326  }
327  else if (old_v.type() == GHOSTED)
328  {
329  // Build a send list for efficient localization
330  BuildProjectionList projection_list(*this);
331  Threads::parallel_reduce (active_local_elem_range,
332  projection_list);
333 
334  // Create a sorted, unique send_list
335  projection_list.unique();
336 
337  new_v.init (this->n_dofs(), this->n_local_dofs(),
338  this->get_dof_map().get_send_list(), false, GHOSTED);
339 
340  local_old_vector_built = NumericVector<Number>::build(this->comm());
341  new_vector_ptr = &new_v;
342  local_old_vector = local_old_vector_built.get();
343  local_old_vector->init(old_v.size(), old_v.local_size(),
344  projection_list.send_list, false, GHOSTED);
345  old_v.localize(*local_old_vector, projection_list.send_list);
346  local_old_vector->close();
347  old_vector_ptr = local_old_vector;
348  }
349  else // unknown old_v.type()
350  libmesh_error_msg("ERROR: Unknown old_v.type() == " << old_v.type());
351 
352  // Note that the above will have zeroed the new_vector.
353  // Just to be sure, assert that new_vector_ptr and old_vector_ptr
354  // were successfully set before trying to deref them.
355  libmesh_assert(new_vector_ptr);
356  libmesh_assert(old_vector_ptr);
357 
358  NumericVector<Number> & new_vector = *new_vector_ptr;
359  const NumericVector<Number> & old_vector = *old_vector_ptr;
360 
361  const unsigned int n_variables = this->n_vars();
362 
363  if (n_variables)
364  {
365  std::vector<unsigned int> vars(n_variables);
366  std::iota(vars.begin(), vars.end(), 0);
367  std::vector<unsigned int> regular_vars, vector_vars;
368  for (auto var : vars)
369  {
371  regular_vars.push_back(var);
372  else
373  vector_vars.push_back(var);
374  }
375 
376  // Use a typedef to make the calling sequence for parallel_for() a bit more readable
377  typedef
378  GenericProjector<OldSolutionValue<Number, &FEMContext::point_value>,
379  OldSolutionValue<Gradient, &FEMContext::point_gradient>,
380  Number, VectorSetAction<Number>> FEMProjector;
381 
382  OldSolutionValue<Number, &FEMContext::point_value> f(*this, old_vector, &regular_vars);
383  OldSolutionValue<Gradient, &FEMContext::point_gradient> g(*this, old_vector, &regular_vars);
384  VectorSetAction<Number> setter(new_vector);
385 
386  FEMProjector projector(*this, f, &g, setter, regular_vars);
387  projector.project(active_local_elem_range);
388 
389  typedef
390  GenericProjector<OldSolutionValue<Gradient, &FEMContext::point_value>,
391  OldSolutionValue<Tensor, &FEMContext::point_gradient>,
392  Gradient, VectorSetAction<Number>> FEMVectorProjector;
393 
394  OldSolutionValue<Gradient, &FEMContext::point_value> f_vector(*this, old_vector, &vector_vars);
395  OldSolutionValue<Tensor, &FEMContext::point_gradient> g_vector(*this, old_vector, &vector_vars);
396 
397  FEMVectorProjector vector_projector(*this, f_vector, &g_vector, setter, vector_vars);
398  vector_projector.project(active_local_elem_range);
399 
400  // Copy the SCALAR dofs from old_vector to new_vector
401  // Note: We assume that all SCALAR dofs are on the
402  // processor with highest ID
403  if (this->processor_id() == (this->n_processors()-1))
404  {
405  const DofMap & dof_map = this->get_dof_map();
406  for (auto var : make_range(this->n_vars()))
407  if (this->variable(var).type().family == SCALAR)
408  {
409  // We can just map SCALAR dofs directly across
410  std::vector<dof_id_type> new_SCALAR_indices, old_SCALAR_indices;
411  dof_map.SCALAR_dof_indices (new_SCALAR_indices, var, false);
412  dof_map.SCALAR_dof_indices (old_SCALAR_indices, var, true);
413  for (auto i : index_range(new_SCALAR_indices))
414  new_vector.set(new_SCALAR_indices[i], old_vector(old_SCALAR_indices[i]));
415  }
416  }
417  }
418 
419  new_vector.close();
420 
421  // If the old vector was serial, we probably need to send our values
422  // to other processors
423  //
424  // FIXME: I'm not sure how to make a NumericVector do that without
425  // creating a temporary parallel vector to use localize! - RHS
426  if (old_v.type() == SERIAL)
427  {
428  std::unique_ptr<NumericVector<Number>> dist_v = NumericVector<Number>::build(this->comm());
429  dist_v->init(this->n_dofs(), this->n_local_dofs(), false, PARALLEL);
430  dist_v->close();
431 
432  for (auto i : make_range(dist_v->size()))
433  if (new_vector(i) != 0.0)
434  dist_v->set(i, new_vector(i));
435 
436  dist_v->close();
437 
438  dist_v->localize (new_v, this->get_dof_map().get_send_list());
439  new_v.close();
440  }
441  // If the old vector was parallel, we need to update it
442  // and free the localized copies
443  else if (old_v.type() == PARALLEL)
444  {
445  // We may have to set dof values that this processor doesn't
446  // own in certain special cases, like LAGRANGE FIRST or
447  // HERMITE THIRD elements on second-order meshes?
448  new_v = new_vector;
449  new_v.close();
450  }
451 
452 
453  // Apply constraints only if we we are asked to
454  if(this->project_with_constraints)
455  {
456  if (is_adjoint == -1)
457  {
458  this->get_dof_map().enforce_constraints_exactly(*this, &new_v);
459  }
460  else if (is_adjoint >= 0)
461  {
463  is_adjoint);
464  }
465  }
466 #else
467 
468  // AMR is disabled: simply copy the vector
469  new_v = old_v;
470 
471  libmesh_ignore(is_adjoint);
472 
473 #endif // #ifdef LIBMESH_ENABLE_AMR
474 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
virtual void get(const std::vector< numeric_index_type > &index, T *values) const
Access multiple components at once.
virtual numeric_index_type size() const =0
static FEFieldType field_type(const FEType &fe_type)
const Parallel::Communicator & comm() const
dof_id_type n_local_dofs() const
Definition: system.C:150
const MeshBase & get_mesh() const
Definition: system.h:2277
virtual void init(const numeric_index_type n, const numeric_index_type n_local, const bool fast=false, const ParallelType ptype=AUTOMATIC)=0
Change the dimension of the vector to n.
void iota(ForwardIter first, ForwardIter last, T value)
Utility::iota was created back when std::iota was just an SGI STL extension.
Definition: utility.h:229
dof_id_type n_dofs() const
Definition: system.C:113
StoredRange< MeshBase::const_element_iterator, const Elem * > ConstElemRange
Definition: elem_range.h:34
void enforce_adjoint_constraints_exactly(NumericVector< Number > &v, unsigned int q) const
Heterogeneously constrains the numeric vector v, which represents an adjoint solution defined on the ...
Definition: dof_map.h:2278
processor_id_type n_processors() const
void libmesh_ignore(const Args &...)
NumberVectorValue Gradient
bool project_with_constraints
Do we want to apply constraints while projecting vectors ?
Definition: system.h:2253
libmesh_assert(ctx)
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
ParallelType type() const
const FEType & variable_type(const unsigned int i) const
Definition: system.h:2427
virtual numeric_index_type local_size() const =0
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
void parallel_reduce(const Range &range, Body &body)
Execute the provided reduction operation in parallel on the specified range.
Definition: threads_none.h:101
virtual void clear()
Restores the NumericVector<T> to a pristine state.
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293
template class LIBMESH_EXPORT NumericVector< Number >
auto index_range(const T &sizable)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:111
void enforce_constraints_exactly(const System &system, NumericVector< Number > *v=nullptr, bool homogeneous=false) const
Constrains the numeric vector v, which represents a solution defined on the mesh. ...
Definition: dof_map.h:2274
virtual void localize(std::vector< T > &v_local) const =0
Creates a copy of the global vector in the local vector v_local.

◆ projection_matrix()

void libMesh::System::projection_matrix ( SparseMatrix< Number > &  proj_mat) const
inherited

This method creates a projection matrix which corresponds to the operation of project_vector between old and new solution spaces.

Heterogeneous Dirichlet boundary conditions are not taken into account here; if this matrix is used for prolongation (mesh refinement) on a side with a heterogeneous BC, the newly created degrees of freedom on that side will still match the coarse grid approximation of the BC, not the fine grid approximation.

Definition at line 952 of file system_projection.C.

References libMesh::Utility::iota(), libMesh::make_range(), n_vars, libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), and libMesh::SparseMatrix< T >::set().

Referenced by libMesh::PetscDMWrapper::init_and_attach_petscdm(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), and SystemsTest::testProjectMatrix3D().

953 {
954  LOG_SCOPE ("projection_matrix()", "System");
955 
956  const unsigned int n_variables = this->n_vars();
957 
958  if (n_variables)
959  {
960  ConstElemRange active_local_elem_range
961  (this->get_mesh().active_local_elements_begin(),
962  this->get_mesh().active_local_elements_end());
963 
964  std::vector<unsigned int> vars(n_variables);
965  std::iota(vars.begin(), vars.end(), 0);
966 
967  // Use a typedef to make the calling sequence for parallel_for() a bit more readable
968  typedef OldSolutionCoefs<Real, &FEMContext::point_value> OldSolutionValueCoefs;
969  typedef OldSolutionCoefs<RealGradient, &FEMContext::point_gradient> OldSolutionGradientCoefs;
970 
971  typedef
972  GenericProjector<OldSolutionValueCoefs,
973  OldSolutionGradientCoefs,
974  DynamicSparseNumberArray<Real,dof_id_type>,
975  MatrixFillAction<Real, Number> > ProjMatFiller;
976 
977  OldSolutionValueCoefs f(*this, &vars);
978  OldSolutionGradientCoefs g(*this, &vars);
979  MatrixFillAction<Real, Number> setter(proj_mat);
980 
981  ProjMatFiller mat_filler(*this, f, &g, setter, vars);
982  mat_filler.project(active_local_elem_range);
983 
984  // Set the SCALAR dof transfer entries too.
985  // Note: We assume that all SCALAR dofs are on the
986  // processor with highest ID
987  if (this->processor_id() == (this->n_processors()-1))
988  {
989  const DofMap & dof_map = this->get_dof_map();
990  for (auto var : make_range(this->n_vars()))
991  if (this->variable(var).type().family == SCALAR)
992  {
993  // We can just map SCALAR dofs directly across
994  std::vector<dof_id_type> new_SCALAR_indices, old_SCALAR_indices;
995  dof_map.SCALAR_dof_indices (new_SCALAR_indices, var, false);
996  dof_map.SCALAR_dof_indices (old_SCALAR_indices, var, true);
997  const unsigned int new_n_dofs =
998  cast_int<unsigned int>(new_SCALAR_indices.size());
999 
1000  for (unsigned int i=0; i<new_n_dofs; i++)
1001  {
1002  proj_mat.set( new_SCALAR_indices[i],
1003  old_SCALAR_indices[i], 1);
1004  }
1005  }
1006  }
1007  }
1008 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
const MeshBase & get_mesh() const
Definition: system.h:2277
void iota(ForwardIter first, ForwardIter last, T value)
Utility::iota was created back when std::iota was just an SGI STL extension.
Definition: utility.h:229
StoredRange< MeshBase::const_element_iterator, const Elem * > ConstElemRange
Definition: elem_range.h:34
virtual void set(const numeric_index_type i, const numeric_index_type j, const T value)=0
Set the element (i,j) to value.
processor_id_type n_processors() const
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293

◆ prolong_vectors()

void libMesh::System::prolong_vectors ( )
virtualinherited

Prolong vectors after the mesh has refined.

Definition at line 436 of file system.C.

References libMesh::System::restrict_vectors().

Referenced by libMesh::EquationSystems::reinit_solutions().

437 {
438 #ifdef LIBMESH_ENABLE_AMR
439  // Currently project_vector handles both restriction and prolongation
440  this->restrict_vectors();
441 #endif
442 }
virtual void restrict_vectors()
Restrict vectors after the mesh has coarsened.
Definition: system.C:378

◆ qoi_parameter_hessian()

void libMesh::System::qoi_parameter_hessian ( const QoISet qoi_indices,
const ParameterVector parameters,
SensitivityData hessian 
)
inlinevirtualinherited

For each of the system's quantities of interest q in qoi[qoi_indices], and for a vector of parameters p, the parameter sensitivity Hessian H_ij is defined as H_ij = (d^2 q)/(d p_i d p_j) This Hessian is the output of this method, where for each q_i, H_jk is stored in hessian.second_derivative(i,j,k).

This method is only implemented in some derived classes.

Reimplemented in libMesh::ImplicitSystem.

Definition at line 2576 of file system.h.

2579 {
2580  libmesh_not_implemented();
2581 }

◆ qoi_parameter_hessian_vector_product()

void libMesh::System::qoi_parameter_hessian_vector_product ( const QoISet qoi_indices,
const ParameterVector parameters,
const ParameterVector vector,
SensitivityData product 
)
inlinevirtualinherited

For each of the system's quantities of interest q in qoi[qoi_indices], and for a vector of parameters p, the parameter sensitivity Hessian H_ij is defined as H_ij = (d^2 q)/(d p_i d p_j) The Hessian-vector product, for a vector v_k in parameter space, is S_j = H_jk v_k This product is the output of this method, where for each q_i, S_j is stored in sensitivities[i][j].

This method is only implemented in some derived classes.

Reimplemented in libMesh::ImplicitSystem.

Definition at line 2585 of file system.h.

2589 {
2590  libmesh_not_implemented();
2591 }

◆ qoi_parameter_sensitivity()

void libMesh::System::qoi_parameter_sensitivity ( const QoISet qoi_indices,
const ParameterVector parameters,
SensitivityData sensitivities 
)
virtualinherited

Solves for the derivative of each of the system's quantities of interest q in qoi[qoi_indices] with respect to each parameter in parameters, placing the result for qoi i and parameter j into sensitivities[i][j].

Note
parameters is a const vector, not a vector-of-const; parameter values in this vector need to be mutable for finite differencing to work.

Automatically chooses the forward method for problems with more quantities of interest than parameters, or the adjoint method otherwise.

This method is only usable in derived classes which override an implementation.

Definition at line 585 of file system.C.

References libMesh::System::adjoint_qoi_parameter_sensitivity(), libMesh::System::forward_qoi_parameter_sensitivity(), libMesh::ParameterVector::size(), and libMesh::QoISet::size().

588 {
589  // Forward sensitivities are more efficient for Nq > Np
590  if (qoi_indices.size(*this) > parameters.size())
591  forward_qoi_parameter_sensitivity(qoi_indices, parameters, sensitivities);
592  // Adjoint sensitivities are more efficient for Np > Nq,
593  // and an adjoint may be more reusable than a forward
594  // solution sensitivity in the Np == Nq case.
595  else
596  adjoint_qoi_parameter_sensitivity(qoi_indices, parameters, sensitivities);
597 }
virtual void forward_qoi_parameter_sensitivity(const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities)
Solves for parameter sensitivities using the forward method.
Definition: system.h:2567
virtual void adjoint_qoi_parameter_sensitivity(const QoISet &qoi_indices, const ParameterVector &parameters, SensitivityData &sensitivities)
Solves for parameter sensitivities using the adjoint method.
Definition: system.h:2558

◆ re_update()

void libMesh::System::re_update ( )
virtualinherited

Re-update the local values when the mesh has changed.

This method takes the data updated by update() and makes it up-to-date on the current mesh.

Reimplemented in libMesh::TransientSystem< RBConstruction >.

Definition at line 516 of file system.C.

References libMesh::System::current_local_solution, libMesh::System::get_dof_map(), libMesh::DofMap::get_send_list(), libMesh::System::n_vars(), and libMesh::System::solution.

517 {
518  parallel_object_only();
519 
520  // If this system is empty... don't do anything!
521  if (!this->n_vars())
522  return;
523 
524  const std::vector<dof_id_type> & send_list = this->get_dof_map().get_send_list ();
525 
526  // Check sizes
527  libmesh_assert_equal_to (current_local_solution->size(), solution->size());
528  // Not true with ghosted vectors
529  // libmesh_assert_equal_to (current_local_solution->local_size(), solution->size());
530  // libmesh_assert (!send_list.empty());
531  libmesh_assert_less_equal (send_list.size(), solution->size());
532 
533  // Create current_local_solution from solution. This will
534  // put a local copy of solution into current_local_solution.
535  solution->localize (*current_local_solution, send_list);
536 }
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
unsigned int n_vars() const
Definition: system.h:2349
const DofMap & get_dof_map() const
Definition: system.h:2293
const std::vector< dof_id_type > & get_send_list() const
Definition: dof_map.h:511

◆ read_header()

void libMesh::System::read_header ( Xdr io,
std::string_view  version,
const bool  read_header = true,
const bool  read_additional_data = true,
const bool  read_legacy_format = false 
)
inherited

Reads the basic data header for this System.

Definition at line 97 of file system_io.C.

References libMesh::System::_additional_data_written, libMesh::System::_written_var_indices, libMesh::System::add_variable(), libMesh::System::add_vector(), TIMPI::Communicator::broadcast(), libMesh::System::clear(), libMesh::ParallelObject::comm(), libMesh::Xdr::data(), libMesh::FEType::family, libMesh::System::get_mesh(), libMesh::OrderWrapper::get_order(), libMesh::FEType::inf_map, libMesh::libmesh_assert(), libMesh::MeshBase::mesh_dimension(), libMesh::MONOMIAL, libMesh::on_command_line(), libMesh::FEType::order, libMesh::out, libMesh::ParallelObject::processor_id(), libMesh::FEType::radial_family, libMesh::FEType::radial_order, libMesh::Xdr::reading(), libMesh::System::variable_number(), libMesh::Xdr::version(), and libMesh::XYZ.

Referenced by libMesh::EquationSystems::read(), and libMesh::RBEvaluation::read_in_vectors_from_multiple_files().

102 {
103  // This method implements the input of a
104  // System object, embedded in the output of
105  // an EquationSystems<T_sys>. This warrants some
106  // documentation. The output file essentially
107  // consists of 5 sections:
108  //
109  // for this system
110  //
111  // 5.) The number of variables in the system (unsigned int)
112  //
113  // for each variable in the system
114  //
115  // 6.) The name of the variable (string)
116  //
117  // 6.1.) Variable subdomains
118  //
119  // 7.) Combined in an FEType:
120  // - The approximation order(s) of the variable
121  // (Order Enum, cast to int/s)
122  // - The finite element family/ies of the variable
123  // (FEFamily Enum, cast to int/s)
124  //
125  // end variable loop
126  //
127  // 8.) The number of additional vectors (unsigned int),
128  //
129  // for each additional vector in the system object
130  //
131  // 9.) the name of the additional vector (string)
132  //
133  // end system
134  libmesh_assert (io.reading());
135 
136  // Possibly clear data structures and start from scratch.
137  if (read_header_in)
138  this->clear ();
139 
140  // Figure out if we need to read infinite element information.
141  // This will be true if the version string contains " with infinite elements"
142  const bool read_ifem_info =
143  (version.rfind(" with infinite elements") < version.size()) ||
144  libMesh::on_command_line ("--read-ifem-systems");
145 
146 
147  {
148  // 5.)
149  // Read the number of variables in the system
150  unsigned int nv=0;
151  if (this->processor_id() == 0)
152  io.data (nv);
153  this->comm().broadcast(nv);
154 
155  _written_var_indices.clear();
156  _written_var_indices.resize(nv, 0);
157 
158  for (unsigned int var=0; var<nv; var++)
159  {
160  // 6.)
161  // Read the name of the var-th variable
162  std::string var_name;
163  if (this->processor_id() == 0)
164  io.data (var_name);
165  this->comm().broadcast(var_name);
166 
167  // 6.1.)
168  std::set<subdomain_id_type> domains;
169  if (io.version() >= LIBMESH_VERSION_ID(0,7,2))
170  {
171  std::vector<subdomain_id_type> domain_array;
172  if (this->processor_id() == 0)
173  io.data (domain_array);
174  for (const auto & id : domain_array)
175  domains.insert(id);
176  }
177  this->comm().broadcast(domains);
178 
179  // 7.)
180  // Read the approximation order(s) of the var-th variable
181  int order=0;
182  if (this->processor_id() == 0)
183  io.data (order);
184  this->comm().broadcast(order);
185 
186 
187  // do the same for infinite element radial_order
188  int rad_order=0;
189  if (read_ifem_info)
190  {
191  if (this->processor_id() == 0)
192  io.data(rad_order);
193  this->comm().broadcast(rad_order);
194  }
195 
196  // Read the finite element type of the var-th variable
197  int fam=0;
198  if (this->processor_id() == 0)
199  io.data (fam);
200  this->comm().broadcast(fam);
201  FEType type;
202  type.order = static_cast<Order>(order);
203  type.family = static_cast<FEFamily>(fam);
204 
205  // Check for incompatibilities. The shape function indexing was
206  // changed for the monomial and xyz finite element families to
207  // simplify extension to arbitrary p. The consequence is that
208  // old restart files will not be read correctly. This is expected
209  // to be an unlikely occurrence, but catch it anyway.
210  if (read_legacy_format)
211  if ((type.family == MONOMIAL || type.family == XYZ) &&
212  ((type.order.get_order() > 2 && this->get_mesh().mesh_dimension() == 2) ||
213  (type.order.get_order() > 1 && this->get_mesh().mesh_dimension() == 3)))
214  {
215  libmesh_here();
216  libMesh::out << "*****************************************************************\n"
217  << "* WARNING: reading a potentially incompatible restart file!!! *\n"
218  << "* contact libmesh-users@lists.sourceforge.net for more details *\n"
219  << "*****************************************************************"
220  << std::endl;
221  }
222 
223  // Read additional information for infinite elements
224  int radial_fam=0;
225  int i_map=0;
226  if (read_ifem_info)
227  {
228  if (this->processor_id() == 0)
229  io.data (radial_fam);
230  this->comm().broadcast(radial_fam);
231  if (this->processor_id() == 0)
232  io.data (i_map);
233  this->comm().broadcast(i_map);
234  }
235 
236 #ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
237 
238  type.radial_order = static_cast<Order>(rad_order);
239  type.radial_family = static_cast<FEFamily>(radial_fam);
240  type.inf_map = static_cast<InfMapType>(i_map);
241 
242 #endif
243 
244  if (read_header_in)
245  {
246  if (domains.empty())
247  _written_var_indices[var] = this->add_variable (var_name, type);
248  else
249  _written_var_indices[var] = this->add_variable (var_name, type, &domains);
250  }
251  else
252  _written_var_indices[var] = this->variable_number(var_name);
253  }
254  }
255 
256  // 8.)
257  // Read the number of additional vectors.
258  unsigned int nvecs=0;
259  if (this->processor_id() == 0)
260  io.data (nvecs);
261  this->comm().broadcast(nvecs);
262 
263  // If nvecs > 0, this means that write_additional_data
264  // was true when this file was written. We will need to
265  // make use of this fact later.
266  this->_additional_data_written = nvecs;
267 
268  for (unsigned int vec=0; vec<nvecs; vec++)
269  {
270  // 9.)
271  // Read the name of the vec-th additional vector
272  std::string vec_name;
273  if (this->processor_id() == 0)
274  io.data (vec_name);
275  this->comm().broadcast(vec_name);
276  if (io.version() >= LIBMESH_VERSION_ID(1,7,0))
277  {
278  int vec_projection = 0;
279  if (this->processor_id() == 0)
280  io.data (vec_projection);
281  this->comm().broadcast(vec_projection);
282  int vec_type;
283  if (this->processor_id() == 0)
284  io.data (vec_type);
285  this->comm().broadcast(vec_type);
286 
287  if (read_additional_data)
288  this->add_vector(vec_name, bool(vec_projection), ParallelType(vec_type));
289  }
290  else if (read_additional_data)
291  // Systems now can handle adding post-initialization vectors
292  // libmesh_assert(this->_can_add_vectors);
293  // Some systems may have added their own vectors already
294  // libmesh_assert_equal_to (this->_vectors.count(vec_name), 0);
295  this->add_vector(vec_name);
296  }
297 }
virtual void clear()
Clear all the data structures associated with the system.
Definition: system.C:168
Order
defines an enum for polynomial orders.
Definition: enum_order.h:40
const Parallel::Communicator & comm() const
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:751
const MeshBase & get_mesh() const
Definition: system.h:2277
unsigned int variable_number(std::string_view var) const
Definition: system.C:1557
libmesh_assert(ctx)
unsigned int _additional_data_written
This flag is used only when reading in a system from file.
Definition: system.h:2223
unsigned int add_variable(std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1305
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
InfMapType
defines an enum for the types of coordinate mappings available in infinite elements.
OStreamProxy out
unsigned int mesh_dimension() const
Definition: mesh_base.C:324
bool on_command_line(std::string arg)
Definition: libmesh.C:924
FEFamily
defines an enum for finite element families.
processor_id_type processor_id() const
std::vector< unsigned int > _written_var_indices
This vector is used only when reading in a system from file.
Definition: system.h:2235
ParallelType
Defines an enum for parallel data structure types.

◆ read_legacy_data()

void libMesh::System::read_legacy_data ( Xdr io,
const bool  read_additional_data = true 
)
inherited

Reads additional data, namely vectors, for this System.

Definition at line 302 of file system_io.C.

References libMesh::System::_additional_data_written, libMesh::System::_vectors, libMesh::System::_written_var_indices, TIMPI::Communicator::broadcast(), libMesh::ParallelObject::comm(), libMesh::Xdr::data(), libMesh::System::get_mesh(), libMesh::DofObject::invalid_id, libMesh::libmesh_assert(), libMesh::make_range(), libMesh::System::n_dofs(), libMesh::System::n_vars(), libMesh::System::number(), libMesh::ParallelObject::processor_id(), libMesh::Xdr::reading(), libMesh::System::solution, and libMesh::zero.

304 {
305  libmesh_deprecated();
306 
307  // This method implements the output of the vectors
308  // contained in this System object, embedded in the
309  // output of an EquationSystems<T_sys>.
310  //
311  // 10.) The global solution vector, re-ordered to be node-major
312  // (More on this later.)
313  //
314  // for each additional vector in the object
315  //
316  // 11.) The global additional vector, re-ordered to be
317  // node-major (More on this later.)
318  libmesh_assert (io.reading());
319 
320  // directly-read and reordered buffers, declared here for reuse
321  // without heap juggling.
322  std::vector<Number> global_vector;
323  std::vector<Number> reordered_vector;
324 
325  auto reorder_vector_into =
326  [this, &global_vector, &reordered_vector]
327  (NumericVector<Number> & vec)
328  {
329  this->comm().broadcast(global_vector);
330 
331  // If we have been reading multiple vectors, they should all be
332  // the same size.
333  libmesh_assert (reordered_vector.empty() ||
334  reordered_vector.size() == global_vector.size());
335 
336  // Remember that the stored vector is node-major.
337  // We need to put it into whatever application-specific
338  // ordering we may have using the dof_map.
339  reordered_vector.resize(global_vector.size());
340 
341  //libMesh::out << "global_vector.size()=" << global_vector.size() << std::endl;
342  //libMesh::out << "this->n_dofs()=" << this->n_dofs() << std::endl;
343 
344  libmesh_assert_equal_to (global_vector.size(), this->n_dofs());
345 
346  dof_id_type cnt=0;
347 
348  const unsigned int sys = this->number();
349  const unsigned int nv = cast_int<unsigned int>
350  (this->_written_var_indices.size());
351  libmesh_assert_less_equal (nv, this->n_vars());
352 
353  for (unsigned int data_var=0; data_var<nv; data_var++)
354  {
355  const unsigned int var = _written_var_indices[data_var];
356 
357  // First reorder the nodal DOF values
358  for (auto & node : this->get_mesh().node_ptr_range())
359  for (auto index : make_range(node->n_comp(sys,var)))
360  {
361  libmesh_assert_not_equal_to (node->dof_number(sys, var, index),
363 
364  libmesh_assert_less (cnt, global_vector.size());
365 
366  reordered_vector[node->dof_number(sys, var, index)] =
367  global_vector[cnt++];
368  }
369 
370  // Then reorder the element DOF values
371  for (auto & elem : this->get_mesh().active_element_ptr_range())
372  for (auto index : make_range(elem->n_comp(sys,var)))
373  {
374  libmesh_assert_not_equal_to (elem->dof_number(sys, var, index),
376 
377  libmesh_assert_less (cnt, global_vector.size());
378 
379  reordered_vector[elem->dof_number(sys, var, index)] =
380  global_vector[cnt++];
381  }
382  }
383 
384  // use the overloaded operator=(std::vector) to assign the values
385  vec = reordered_vector;
386  };
387 
388  // 10.)
389  // Read and set the solution vector
390  if (this->processor_id() == 0)
391  io.data (global_vector);
392  reorder_vector_into(*(this->solution));
393 
394  // For each additional vector, simply go through the list.
395  // ONLY attempt to do this IF additional data was actually
396  // written to the file for this system (controlled by the
397  // _additional_data_written flag).
398  if (this->_additional_data_written)
399  {
400  const std::size_t nvecs = this->_vectors.size();
401 
402  // If the number of additional vectors written is non-zero, and
403  // the number of additional vectors we have is non-zero, and
404  // they don't match, then something is wrong and we can't be
405  // sure we're reading data into the correct places.
406  if (read_additional_data && nvecs &&
407  nvecs != this->_additional_data_written)
408  libmesh_error_msg
409  ("Additional vectors in file do not match system");
410 
411  auto pos = this->_vectors.begin();
412 
413  for (std::size_t i = 0; i != this->_additional_data_written; ++i)
414  {
415  // 11.)
416  // Read the values of the vec-th additional vector.
417  // Prior do _not_ clear, but fill with zero, since the
418  // additional vectors _have_ to have the same size
419  // as the solution vector
420  std::fill (global_vector.begin(), global_vector.end(), libMesh::zero);
421 
422  if (this->processor_id() == 0)
423  io.data (global_vector);
424 
425  // If read_additional_data==true and we have additional vectors,
426  // then we will keep this vector data; otherwise we are going to
427  // throw it away.
428  if (read_additional_data && nvecs)
429  {
430  std::fill (reordered_vector.begin(),
431  reordered_vector.end(),
432  libMesh::zero);
433 
434  reorder_vector_into(*(pos->second));
435  }
436 
437  // If we've got vectors then we need to be iterating through
438  // those too
439  if (pos != this->_vectors.end())
440  ++pos;
441  }
442  } // end if (_additional_data_written)
443 }
const Parallel::Communicator & comm() const
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
const Number zero
.
Definition: libmesh.h:280
const MeshBase & get_mesh() const
Definition: system.h:2277
dof_id_type n_dofs() const
Definition: system.C:113
unsigned int number() const
Definition: system.h:2269
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
static const dof_id_type invalid_id
An invalid id to distinguish an uninitialized DofObject.
Definition: dof_object.h:477
unsigned int _additional_data_written
This flag is used only when reading in a system from file.
Definition: system.h:2223
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
template class LIBMESH_EXPORT NumericVector< Number >
std::vector< unsigned int > _written_var_indices
This vector is used only when reading in a system from file.
Definition: system.h:2235
uint8_t dof_id_type
Definition: id_types.h:67

◆ read_parallel_data() [1/2]

template<typename InValType >
void libMesh::System::read_parallel_data ( Xdr io,
const bool  read_additional_data 
)
inherited

Reads additional data, namely vectors, for this System.

This method may safely be called on a distributed-memory mesh. This method will read an individual file for each processor in the simulation where the local solution components for that processor are stored.

This method implements the output of the vectors contained in this System object, embedded in the output of an EquationSystems<T_sys>.

9.) The global solution vector, re-ordered to be node-major (More on this later.)

for each additional vector in the object

10.) The global additional vector, re-ordered to be node-major (More on this later.)

Note that the actual IO is handled through the Xdr class (to be renamed later?) which provides a uniform interface to both the XDR (eXternal Data Representation) interface and standard ASCII output. Thus this one section of code will read XDR or ASCII files with no changes.

Definition at line 449 of file system_io.C.

References libMesh::System::_additional_data_written, libMesh::System::_vectors, libMesh::System::_written_var_indices, libMesh::Xdr::data(), libMesh::FEType::family, libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::DofObject::invalid_id, libMesh::Xdr::is_open(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::ParallelObject::n_processors(), libMesh::System::n_vars(), libMesh::System::number(), libMesh::ParallelObject::processor_id(), libMesh::Xdr::reading(), libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), libMesh::System::solution, libMesh::Variable::type(), and libMesh::System::variable().

451 {
471  // PerfLog pl("IO Performance",false);
472  // pl.push("read_parallel_data");
473  dof_id_type total_read_size = 0;
474 
475  libmesh_assert (io.reading());
476  libmesh_assert (io.is_open());
477 
478  // build the ordered nodes and element maps.
479  // when writing/reading parallel files we need to iterate
480  // over our nodes/elements in order of increasing global id().
481  // however, this is not guaranteed to be ordering we obtain
482  // by using the node_iterators/element_iterators directly.
483  // so build a set, sorted by id(), that provides the ordering.
484  // further, for memory economy build the set but then transfer
485  // its contents to vectors, which will be sorted.
486  std::vector<const DofObject *> ordered_nodes, ordered_elements;
487  {
488  std::set<const DofObject *, CompareDofObjectsByID>
489  ordered_nodes_set (this->get_mesh().local_nodes_begin(),
490  this->get_mesh().local_nodes_end());
491 
492  ordered_nodes.insert(ordered_nodes.end(),
493  ordered_nodes_set.begin(),
494  ordered_nodes_set.end());
495  }
496  {
497  std::set<const DofObject *, CompareDofObjectsByID>
498  ordered_elements_set (this->get_mesh().local_elements_begin(),
499  this->get_mesh().local_elements_end());
500 
501  ordered_elements.insert(ordered_elements.end(),
502  ordered_elements_set.begin(),
503  ordered_elements_set.end());
504  }
505 
506  // std::vector<Number> io_buffer;
507  std::vector<InValType> io_buffer;
508 
509  // 9.)
510  //
511  // Actually read the solution components
512  // for the ith system to disk
513  io.data(io_buffer);
514 
515  total_read_size += cast_int<dof_id_type>(io_buffer.size());
516 
517  const unsigned int sys_num = this->number();
518  const unsigned int nv = cast_int<unsigned int>
519  (this->_written_var_indices.size());
520  libmesh_assert_less_equal (nv, this->n_vars());
521 
522  dof_id_type cnt=0;
523 
524  // Loop over each non-SCALAR variable and each node, and read out the value.
525  for (unsigned int data_var=0; data_var<nv; data_var++)
526  {
527  const unsigned int var = _written_var_indices[data_var];
528  if (this->variable(var).type().family != SCALAR)
529  {
530  // First read the node DOF values
531  for (const auto & node : ordered_nodes)
532  for (auto comp : make_range(node->n_comp(sys_num,var)))
533  {
534  libmesh_assert_not_equal_to (node->dof_number(sys_num, var, comp),
536  libmesh_assert_less (cnt, io_buffer.size());
537  this->solution->set(node->dof_number(sys_num, var, comp), io_buffer[cnt++]);
538  }
539 
540  // Then read the element DOF values
541  for (const auto & elem : ordered_elements)
542  for (auto comp : make_range(elem->n_comp(sys_num,var)))
543  {
544  libmesh_assert_not_equal_to (elem->dof_number(sys_num, var, comp),
546  libmesh_assert_less (cnt, io_buffer.size());
547  this->solution->set(elem->dof_number(sys_num, var, comp), io_buffer[cnt++]);
548  }
549  }
550  }
551 
552  // Finally, read the SCALAR variables on the last processor
553  for (unsigned int data_var=0; data_var<nv; data_var++)
554  {
555  const unsigned int var = _written_var_indices[data_var];
556  if (this->variable(var).type().family == SCALAR)
557  {
558  if (this->processor_id() == (this->n_processors()-1))
559  {
560  const DofMap & dof_map = this->get_dof_map();
561  std::vector<dof_id_type> SCALAR_dofs;
562  dof_map.SCALAR_dof_indices(SCALAR_dofs, var);
563 
564  for (auto dof : SCALAR_dofs)
565  this->solution->set(dof, io_buffer[cnt++]);
566  }
567  }
568  }
569 
570  // And we're done setting solution entries
571  this->solution->close();
572 
573  // For each additional vector, simply go through the list.
574  // ONLY attempt to do this IF additional data was actually
575  // written to the file for this system (controlled by the
576  // _additional_data_written flag).
577  if (this->_additional_data_written)
578  {
579  const std::size_t nvecs = this->_vectors.size();
580 
581  // If the number of additional vectors written is non-zero, and
582  // the number of additional vectors we have is non-zero, and
583  // they don't match, then something is wrong and we can't be
584  // sure we're reading data into the correct places.
585  if (read_additional_data && nvecs &&
586  nvecs != this->_additional_data_written)
587  libmesh_error_msg
588  ("Additional vectors in file do not match system");
589 
590  auto pos = _vectors.begin();
591 
592  for (std::size_t i = 0; i != this->_additional_data_written; ++i)
593  {
594  cnt=0;
595  io_buffer.clear();
596 
597  // 10.)
598  //
599  // Actually read the additional vector components
600  // for the ith system from disk
601  io.data(io_buffer);
602 
603  total_read_size += cast_int<dof_id_type>(io_buffer.size());
604 
605  // If read_additional_data==true and we have additional vectors,
606  // then we will keep this vector data; otherwise we are going to
607  // throw it away.
608  if (read_additional_data && nvecs)
609  {
610  // Loop over each non-SCALAR variable and each node, and read out the value.
611  for (unsigned int data_var=0; data_var<nv; data_var++)
612  {
613  const unsigned int var = _written_var_indices[data_var];
614  if (this->variable(var).type().family != SCALAR)
615  {
616  // First read the node DOF values
617  for (const auto & node : ordered_nodes)
618  for (auto comp : make_range(node->n_comp(sys_num,var)))
619  {
620  libmesh_assert_not_equal_to (node->dof_number(sys_num, var, comp),
622  libmesh_assert_less (cnt, io_buffer.size());
623  pos->second->set(node->dof_number(sys_num, var, comp), io_buffer[cnt++]);
624  }
625 
626  // Then read the element DOF values
627  for (const auto & elem : ordered_elements)
628  for (auto comp : make_range(elem->n_comp(sys_num,var)))
629  {
630  libmesh_assert_not_equal_to (elem->dof_number(sys_num, var, comp),
632  libmesh_assert_less (cnt, io_buffer.size());
633  pos->second->set(elem->dof_number(sys_num, var, comp), io_buffer[cnt++]);
634  }
635  }
636  }
637 
638  // Finally, read the SCALAR variables on the last processor
639  for (unsigned int data_var=0; data_var<nv; data_var++)
640  {
641  const unsigned int var = _written_var_indices[data_var];
642  if (this->variable(var).type().family == SCALAR)
643  {
644  if (this->processor_id() == (this->n_processors()-1))
645  {
646  const DofMap & dof_map = this->get_dof_map();
647  std::vector<dof_id_type> SCALAR_dofs;
648  dof_map.SCALAR_dof_indices(SCALAR_dofs, var);
649 
650  for (auto dof : SCALAR_dofs)
651  pos->second->set(dof, io_buffer[cnt++]);
652  }
653  }
654  }
655 
656  // And we're done setting entries for this variable
657  pos->second->close();
658  }
659 
660  // If we've got vectors then we need to be iterating through
661  // those too
662  if (pos != this->_vectors.end())
663  ++pos;
664  }
665  }
666 
667  // const Real
668  // dt = pl.get_elapsed_time(),
669  // rate = total_read_size*sizeof(Number)/dt;
670 
671  // libMesh::err << "Read " << total_read_size << " \"Number\" values\n"
672  // << " Elapsed time = " << dt << '\n'
673  // << " Rate = " << rate/1.e6 << "(MB/sec)\n\n";
674 
675  // pl.pop("read_parallel_data");
676 }
FEFamily family
The type of finite element.
Definition: fe_type.h:207
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
const MeshBase & get_mesh() const
Definition: system.h:2277
processor_id_type n_processors() const
unsigned int number() const
Definition: system.h:2269
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
static const dof_id_type invalid_id
An invalid id to distinguish an uninitialized DofObject.
Definition: dof_object.h:477
unsigned int _additional_data_written
This flag is used only when reading in a system from file.
Definition: system.h:2223
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293
std::vector< unsigned int > _written_var_indices
This vector is used only when reading in a system from file.
Definition: system.h:2235
uint8_t dof_id_type
Definition: id_types.h:67
const FEType & type() const
Definition: variable.h:140

◆ read_parallel_data() [2/2]

template LIBMESH_EXPORT void libMesh::System::read_parallel_data< Real > ( Xdr io,
const bool  read_additional_data 
)
inlineinherited

Non-templated version for backward compatibility.

Reads additional data, namely vectors, for this System. This method may safely be called on a distributed-memory mesh. This method will read an individual file for each processor in the simulation where the local solution components for that processor are stored.

Definition at line 1333 of file system.h.

1335  { read_parallel_data<Number>(io, read_additional_data); }

◆ read_parameter_data_from_files()

void libMesh::RBParametrized::read_parameter_data_from_files ( const std::string &  continuous_param_file_name,
const std::string &  discrete_param_file_name,
const bool  read_binary_data 
)
inherited

Read in the parameter ranges from files.

Definition at line 274 of file rb_parametrized.C.

References libMesh::RBParametrized::initialize_parameters(), libMesh::RBParametrized::read_discrete_parameter_values_from_file(), and libMesh::RBParametrized::read_parameter_ranges_from_file().

Referenced by libMesh::RBSCMEvaluation::legacy_read_offline_data_from_files(), and libMesh::RBEvaluation::legacy_read_offline_data_from_files().

277 {
278  RBParameters param_min;
279  RBParameters param_max;
280  read_parameter_ranges_from_file(continuous_param_file_name,
281  read_binary_data,
282  param_min,
283  param_max);
284 
285  std::map<std::string, std::vector<Real>> discrete_parameter_values_in;
286  read_discrete_parameter_values_from_file(discrete_param_file_name,
287  read_binary_data,
288  discrete_parameter_values_in);
289 
290  initialize_parameters(param_min, param_max, discrete_parameter_values_in);
291 }
void read_parameter_ranges_from_file(const std::string &file_name, const bool read_binary, RBParameters &param_min, RBParameters &param_max)
Read in the parameter ranges from file.
void read_discrete_parameter_values_from_file(const std::string &file_name, const bool read_binary_data, std::map< std::string, std::vector< Real >> &discrete_parameter_values_in)
Read in the discrete parameter values from file, if we have any.
void initialize_parameters(const RBParameters &mu_min_in, const RBParameters &mu_max_in, const std::map< std::string, std::vector< Real >> &discrete_parameter_values)
Initialize the parameter ranges and set current_parameters.

◆ read_serialized_data() [1/2]

template<typename InValType >
void libMesh::System::read_serialized_data ( Xdr io,
const bool  read_additional_data = true 
)
inherited

Reads additional data, namely vectors, for this System.

This method may safely be called on a distributed-memory mesh.

Definition at line 680 of file system_io.C.

References libMesh::System::_additional_data_written, libMesh::System::_vectors, libMesh::ParallelObject::processor_id(), and libMesh::System::solution.

Referenced by libMesh::TransientRBConstruction::initialize_truth(), libMesh::TransientRBConstruction::read_riesz_representors_from_files(), and libMesh::RBConstruction::read_riesz_representors_from_files().

682 {
683  // This method implements the input of the vectors
684  // contained in this System object, embedded in the
685  // output of an EquationSystems<T_sys>.
686  //
687  // 10.) The global solution vector, re-ordered to be node-major
688  // (More on this later.)
689  //
690  // for each additional vector in the object
691  //
692  // 11.) The global additional vector, re-ordered to be
693  // node-major (More on this later.)
694  parallel_object_only();
695  std::string comment;
696 
697  // PerfLog pl("IO Performance",false);
698  // pl.push("read_serialized_data");
699  // std::size_t total_read_size = 0;
700 
701  // 10.)
702  // Read the global solution vector
703  {
704  // total_read_size +=
705  this->read_serialized_vector<InValType>(io, this->solution.get());
706 
707  // get the comment
708  if (this->processor_id() == 0)
709  io.comment (comment);
710  }
711 
712  // 11.)
713  // Only read additional vectors if data is available, and only use
714  // that data to fill our vectors if the user requested it.
715  if (this->_additional_data_written)
716  {
717  const std::size_t nvecs = this->_vectors.size();
718 
719  // If the number of additional vectors written is non-zero, and
720  // the number of additional vectors we have is non-zero, and
721  // they don't match, then we can't read additional vectors
722  // and be sure we're reading data into the correct places.
723  if (read_additional_data && nvecs &&
724  nvecs != this->_additional_data_written)
725  libmesh_error_msg
726  ("Additional vectors in file do not match system");
727 
728  auto pos = _vectors.begin();
729 
730  for (std::size_t i = 0; i != this->_additional_data_written; ++i)
731  {
732  // Read data, but only put it into a vector if we've been
733  // asked to and if we have a corresponding vector to read.
734 
735  // total_read_size +=
736  this->read_serialized_vector<InValType>
737  (io, (read_additional_data && nvecs) ? pos->second.get() : nullptr);
738 
739  // get the comment
740  if (this->processor_id() == 0)
741  io.comment (comment);
742 
743 
744  // If we've got vectors then we need to be iterating through
745  // those too
746  if (pos != this->_vectors.end())
747  ++pos;
748  }
749  }
750 
751  // const Real
752  // dt = pl.get_elapsed_time(),
753  // rate = total_read_size*sizeof(Number)/dt;
754 
755  // libMesh::out << "Read " << total_read_size << " \"Number\" values\n"
756  // << " Elapsed time = " << dt << '\n'
757  // << " Rate = " << rate/1.e6 << "(MB/sec)\n\n";
758 
759  // pl.pop("read_serialized_data");
760 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
unsigned int _additional_data_written
This flag is used only when reading in a system from file.
Definition: system.h:2223
processor_id_type processor_id() const

◆ read_serialized_data() [2/2]

template LIBMESH_EXPORT void libMesh::System::read_serialized_data< Real > ( Xdr io,
const bool  read_additional_data = true 
)
inlineinherited

Non-templated version for backward compatibility.

Reads additional data, namely vectors, for this System. This method may safely be called on a distributed-memory mesh.

Definition at line 1291 of file system.h.

1293  { read_serialized_data<Number>(io, read_additional_data); }

◆ read_serialized_vectors() [1/2]

template<typename InValType >
std::size_t libMesh::System::read_serialized_vectors ( Xdr io,
const std::vector< NumericVector< Number > *> &  vectors 
) const
inherited

Read a number of identically distributed vectors.

This method allows for optimization for the multiple vector case by only communicating the metadata once.

Definition at line 2165 of file system_io.C.

References libMesh::Xdr::data(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::MeshTools::n_elem(), libMesh::MeshBase::n_elem(), n_nodes, libMesh::MeshBase::n_nodes(), libMesh::System::n_vars(), libMesh::ParallelObject::processor_id(), libMesh::System::read_SCALAR_dofs(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::Xdr::reading(), libMesh::SCALAR, and libMesh::System::variable().

Referenced by libMesh::RBEvaluation::read_in_vectors_from_multiple_files().

2167 {
2168  parallel_object_only();
2169 
2170  // Error checking
2171  // #ifndef NDEBUG
2172  // // In parallel we better be reading a parallel vector -- if not
2173  // // we will not set all of its components below!!
2174  // if (this->n_processors() > 1)
2175  // {
2176  // libmesh_assert (vec.type() == PARALLEL ||
2177  // vec.type() == GHOSTED);
2178  // }
2179  // #endif
2180 
2181  libmesh_assert (io.reading());
2182 
2183  if (this->processor_id() == 0)
2184  {
2185  // sizes
2186  unsigned int num_vecs=0;
2187  dof_id_type vector_length=0;
2188 
2189  // Get the number of vectors
2190  io.data(num_vecs);
2191  // Get the buffer size
2192  io.data(vector_length);
2193 
2194  libmesh_error_msg_if (num_vecs != vectors.size(), "Unexpected value of num_vecs");
2195 
2196  if (num_vecs != 0)
2197  {
2198  libmesh_error_msg_if (vectors[0] == nullptr, "vectors[0] should not be null");
2199  libmesh_error_msg_if (vectors[0]->size() != vector_length, "Inconsistent vector sizes");
2200  }
2201  }
2202 
2203  // no need to actually communicate these.
2204  // this->comm().broadcast(num_vecs);
2205  // this->comm().broadcast(vector_length);
2206 
2207  // Cache these - they are not free!
2208  const dof_id_type
2209  n_nodes = this->get_mesh().n_nodes(),
2210  n_elem = this->get_mesh().n_elem();
2211 
2212  std::size_t read_length = 0;
2213 
2214  //---------------------------------
2215  // Collect the values for all nodes
2216  read_length +=
2217  this->read_serialized_blocked_dof_objects (n_nodes,
2218  this->get_mesh().local_nodes_begin(),
2219  this->get_mesh().local_nodes_end(),
2220  InValType(),
2221  io,
2222  vectors);
2223 
2224  //------------------------------------
2225  // Collect the values for all elements
2226  read_length +=
2228  this->get_mesh().local_elements_begin(),
2229  this->get_mesh().local_elements_end(),
2230  InValType(),
2231  io,
2232  vectors);
2233 
2234  //-------------------------------------------
2235  // Finally loop over all the SCALAR variables
2236  for (NumericVector<Number> * vec : vectors)
2237  for (auto var : make_range(this->n_vars()))
2238  if (this->variable(var).type().family == SCALAR)
2239  {
2240  libmesh_assert_not_equal_to (vec, 0);
2241 
2242  read_length +=
2243  this->read_SCALAR_dofs (var, io, vec);
2244  }
2245 
2246  //---------------------------------------
2247  // last step - must close all the vectors
2248  for (NumericVector<Number> * vec : vectors)
2249  {
2250  libmesh_assert_not_equal_to (vec, 0);
2251  vec->close();
2252  }
2253 
2254  return read_length;
2255 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
dof_id_type n_elem(const MeshBase::const_element_iterator &begin, const MeshBase::const_element_iterator &end)
Count up the number of elements of a specific type (as defined by an iterator range).
Definition: mesh_tools.C:850
std::size_t read_serialized_blocked_dof_objects(const dof_id_type n_objects, const iterator_type begin, const iterator_type end, const InValType dummy, Xdr &io, const std::vector< NumericVector< Number > *> &vecs, const unsigned int var_to_read=libMesh::invalid_uint) const
Reads an input vector from the stream io and assigns the values to a set of DofObjects.
Definition: system_io.C:765
const MeshBase & get_mesh() const
Definition: system.h:2277
const dof_id_type n_nodes
Definition: tecplot_io.C:67
libmesh_assert(ctx)
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int read_SCALAR_dofs(const unsigned int var, Xdr &io, NumericVector< Number > *vec) const
Reads the SCALAR dofs from the stream io and assigns the values to the appropriate entries of vec...
Definition: system_io.C:1089
unsigned int n_vars() const
Definition: system.h:2349
virtual dof_id_type n_elem() const =0
processor_id_type processor_id() const
template class LIBMESH_EXPORT NumericVector< Number >
virtual dof_id_type n_nodes() const =0
uint8_t dof_id_type
Definition: id_types.h:67

◆ read_serialized_vectors() [2/2]

template LIBMESH_EXPORT std::size_t libMesh::System::read_serialized_vectors< Real > ( Xdr io,
const std::vector< NumericVector< Number > *> &  vectors 
) const
inlineinherited

Non-templated version for backward compatibility.

Read a number of identically distributed vectors. This method allows for optimization for the multiple vector case by only communicating the metadata once.

Definition at line 1311 of file system.h.

1313  { return read_serialized_vectors<Number>(io, vectors); }

◆ reinit()

void libMesh::EigenSystem::reinit ( )
overridevirtualinherited

Reinitializes the member data fields associated with the system, so that, e.g., assemble() may be used.

Reimplemented from libMesh::System.

Definition at line 182 of file eigen_system.C.

References libMesh::System::reinit(), libMesh::EigenSystem::shell_matrix_A, libMesh::EigenSystem::shell_matrix_B, and libMesh::EigenSystem::shell_precond_matrix.

183 {
184  // initialize parent data
185  // this calls reinit on matrix_A, matrix_B, and precond_matrix (if any)
186  Parent::reinit();
187 
188  if (shell_matrix_A)
189  {
190  shell_matrix_A->clear();
191  shell_matrix_A->init();
192  }
193 
194  if (shell_matrix_B)
195  {
196  shell_matrix_B->clear();
197  shell_matrix_B->init();
198  }
199 
201  {
202  shell_precond_matrix->clear();
203  shell_precond_matrix->init();
204  }
205 }
virtual void reinit()
Reinitializes degrees of freedom and other required data on the current mesh.
Definition: system.C:446
std::unique_ptr< ShellMatrix< Number > > shell_precond_matrix
A preconditioning shell matrix.
Definition: eigen_system.h:353
std::unique_ptr< ShellMatrix< Number > > shell_matrix_A
The system shell matrix for standard eigenvalue problems.
Definition: eigen_system.h:329
std::unique_ptr< ShellMatrix< Number > > shell_matrix_B
A second system shell matrix for generalized eigenvalue problems.
Definition: eigen_system.h:337

◆ reinit_constraints()

void libMesh::System::reinit_constraints ( )
virtualinherited

Reinitializes the constraints for this system.

Definition at line 480 of file system.C.

References libMesh::System::_mesh, libMesh::DofMap::create_dof_constraints(), libMesh::System::get_dof_map(), libMesh::DofMap::prepare_send_list(), libMesh::DofMap::process_constraints(), libMesh::System::time, and libMesh::System::user_constrain().

Referenced by libMesh::EquationSystems::allgather(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::System::init_data(), and libMesh::EquationSystems::reinit_solutions().

481 {
482  parallel_object_only();
483 
484 #ifdef LIBMESH_ENABLE_CONSTRAINTS
486  user_constrain();
488 #endif
490 }
Real time
For time-dependent problems, this is the time t at the beginning of the current timestep.
Definition: system.h:1595
void process_constraints(MeshBase &)
Postprocesses any constrained degrees of freedom to be constrained only in terms of unconstrained dof...
void create_dof_constraints(const MeshBase &, Real time=0)
Rebuilds the raw degree of freedom and DofObject constraints, based on attached DirichletBoundary obj...
void prepare_send_list()
Takes the _send_list vector (which may have duplicate entries) and sorts it.
Definition: dof_map.C:1692
virtual void user_constrain()
Calls user&#39;s attached constraint function, or is overridden by the user in derived classes...
Definition: system.C:2273
const DofMap & get_dof_map() const
Definition: system.h:2293
MeshBase & _mesh
Constant reference to the mesh data structure used for the simulation.
Definition: system.h:2125

◆ reinit_mesh()

void libMesh::System::reinit_mesh ( )
virtualinherited

Reinitializes the system with a new mesh.

Definition at line 304 of file system.C.

References libMesh::System::_basic_system_only, libMesh::System::init_data(), libMesh::System::n_vars(), and libMesh::System::user_initialization().

305 {
306  parallel_object_only();
307 
308  // First initialize any required data:
309  // either only the basic System data
310  if (_basic_system_only)
312  // or all the derived class' data too
313  else
314  this->init_data();
315 
316  // If no variables have been added to this system
317  // don't do anything
318  if (!this->n_vars())
319  return;
320 
321  // Then call the user-provided initialization function
322  this->user_initialization();
323 
324 }
bool _basic_system_only
Holds true if the components of more advanced system types (e.g.
Definition: system.h:2204
virtual void init_data()
Initializes the data for the system.
Definition: system.C:216
virtual void user_initialization()
Calls user&#39;s attached initialization function, or is overridden by the user in derived classes...
Definition: system.C:2245
unsigned int n_vars() const
Definition: system.h:2349

◆ remove_matrix()

void libMesh::System::remove_matrix ( std::string_view  mat_name)
inherited

Removes the additional matrix mat_name from this system.

Definition at line 1032 of file system.C.

References libMesh::System::_matrices.

1033 {
1034  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1035 
1036  matrices_iterator pos = _matrices.find(mat_name);
1037 
1038  // Return if the matrix does not exist
1039  if (pos == _matrices.end())
1040  return;
1041 
1042  _matrices.erase(pos); // erase()'d entries are destroyed
1043 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::iterator matrices_iterator
Matrix iterator typedefs.
Definition: system.h:1809
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ remove_vector()

void libMesh::System::remove_vector ( std::string_view  vec_name)
inherited

Removes the additional vector vec_name from this system.

Definition at line 846 of file system.C.

References libMesh::System::_vector_is_adjoint, libMesh::System::_vector_projections, libMesh::System::_vectors, and libMesh::libmesh_assert().

Referenced by libMesh::AdjointRefinementEstimator::estimate_error(), and libMesh::UnsteadySolver::integrate_adjoint_sensitivity().

847 {
848  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
849 
850  vectors_iterator pos = _vectors.find(vec_name);
851 
852  //Return if the vector does not exist
853  if (pos == _vectors.end())
854  return;
855 
856  _vectors.erase(pos);
857  auto proj_it = _vector_projections.find(vec_name);
858  libmesh_assert(proj_it != _vector_projections.end());
859  _vector_projections.erase(proj_it);
860 
861  auto adj_it = _vector_is_adjoint.find(vec_name);
862  libmesh_assert(adj_it != _vector_is_adjoint.end());
863  _vector_is_adjoint.erase(adj_it);
864 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::iterator vectors_iterator
Vector iterator typedefs.
Definition: system.h:766
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
std::map< std::string, int, std::less<> > _vector_is_adjoint
Holds non-negative if a vector by that name should be projected using adjoint constraints/BCs, -1 if primal.
Definition: system.h:2176
libmesh_assert(ctx)
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ request_matrix() [1/2]

const SparseMatrix< Number > * libMesh::System::request_matrix ( std::string_view  mat_name) const
inherited
Returns
A const pointer to this system's additional matrix named mat_name, or nullptr if no matrix by that name exists.

Definition at line 1047 of file system.C.

References libMesh::System::_matrices.

Referenced by libMesh::EigenSystem::has_matrix_A(), libMesh::EigenSystem::has_matrix_B(), libMesh::EigenSystem::has_precond_matrix(), libMesh::ImplicitSystem::sensitivity_solve(), libMesh::NewtonSolver::solve(), and libMesh::LinearImplicitSystem::solve().

1048 {
1049  // Make sure the matrix exists
1050  const_matrices_iterator pos = _matrices.find(mat_name);
1051 
1052  if (pos == _matrices.end())
1053  return nullptr;
1054 
1055  return pos->second.get();
1056 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::const_iterator const_matrices_iterator
Definition: system.h:1810
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ request_matrix() [2/2]

SparseMatrix< Number > * libMesh::System::request_matrix ( std::string_view  mat_name)
inherited
Returns
A writable pointer to this system's additional matrix named mat_name, or nullptr if no matrix by that name exists.

Definition at line 1060 of file system.C.

References libMesh::System::_matrices.

1061 {
1062  // Make sure the matrix exists
1063  matrices_iterator pos = _matrices.find(mat_name);
1064 
1065  if (pos == _matrices.end())
1066  return nullptr;
1067 
1068  return pos->second.get();
1069 }
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> >::iterator matrices_iterator
Matrix iterator typedefs.
Definition: system.h:1809
std::map< std::string, std::unique_ptr< SparseMatrix< Number > >, std::less<> > _matrices
Some systems need an arbitrary number of matrices.
Definition: system.h:2181

◆ request_vector() [1/4]

const NumericVector< Number > * libMesh::System::request_vector ( std::string_view  vec_name) const
inherited
Returns
A const pointer to the vector if this System has a vector associated with the given name, nullptr otherwise.

Definition at line 866 of file system.C.

References libMesh::System::_vectors.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error().

867 {
868  const_vectors_iterator pos = _vectors.find(vec_name);
869 
870  if (pos == _vectors.end())
871  return nullptr;
872 
873  return pos->second.get();
874 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::const_iterator const_vectors_iterator
Definition: system.h:767

◆ request_vector() [2/4]

NumericVector< Number > * libMesh::System::request_vector ( std::string_view  vec_name)
inherited
Returns
A pointer to the vector if this System has a vector associated with the given name, nullptr otherwise.

Definition at line 878 of file system.C.

References libMesh::System::_vectors.

879 {
880  vectors_iterator pos = _vectors.find(vec_name);
881 
882  if (pos == _vectors.end())
883  return nullptr;
884 
885  return pos->second.get();
886 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> >::iterator vectors_iterator
Vector iterator typedefs.
Definition: system.h:766
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ request_vector() [3/4]

const NumericVector< Number > * libMesh::System::request_vector ( const unsigned int  vec_num) const
inherited
Returns
A const pointer to this system's additional vector number vec_num (where the vectors are counted starting with 0), or nullptr if the system has no such vector.

Definition at line 890 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

891 {
892  // If we don't have that many vectors, return nullptr
893  if (vec_num >= _vectors.size())
894  return nullptr;
895 
896  // Otherwise return a pointer to the vec_num'th vector
897  auto it = vectors_begin();
898  std::advance(it, vec_num);
899  return it->second.get();
900 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ request_vector() [4/4]

NumericVector< Number > * libMesh::System::request_vector ( const unsigned int  vec_num)
inherited
Returns
A writable pointer to this system's additional vector number vec_num (where the vectors are counted starting with 0), or nullptr if the system has no such vector.

Definition at line 904 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

905 {
906  // If we don't have that many vectors, return nullptr
907  if (vec_num >= _vectors.size())
908  return nullptr;
909 
910  // Otherwise return a pointer to the vec_num'th vector
911  auto it = vectors_begin();
912  std::advance(it, vec_num);
913  return it->second.get();
914 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ resize_SCM_vectors()

void libMesh::RBSCMConstruction::resize_SCM_vectors ( )
virtual

Clear and resize the SCM data vectors.

Override in subclass as necessary.

Definition at line 188 of file rb_scm_construction.C.

References libMesh::RBSCMEvaluation::B_max, libMesh::RBSCMEvaluation::B_min, libMesh::RBSCMEvaluation::C_J, libMesh::RBSCMEvaluation::C_J_stability_vector, get_rb_theta_expansion(), rb_scm_eval, and libMesh::RBSCMEvaluation::SCM_UB_vectors.

189 {
190  // Clear SCM data vectors
191  rb_scm_eval->B_min.clear();
192  rb_scm_eval->B_max.clear();
193  rb_scm_eval->C_J.clear();
195  for (auto & vec : rb_scm_eval->SCM_UB_vectors)
196  vec.clear();
197  rb_scm_eval->SCM_UB_vectors.clear();
198 
199  // Resize the bounding box vectors
200  rb_scm_eval->B_min.resize(get_rb_theta_expansion().get_n_A_terms());
201  rb_scm_eval->B_max.resize(get_rb_theta_expansion().get_n_A_terms());
202 }
std::vector< Real > B_min
B_min, B_max define the bounding box.
std::vector< Real > B_max
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...
std::vector< std::vector< Real > > SCM_UB_vectors
This matrix stores the infimizing vectors y_1( ),...,y_Q_a( ), for each in C_J, which are used in co...
std::vector< Real > C_J_stability_vector
Vector storing the (truth) stability values at the parameters in C_J.
std::vector< RBParameters > C_J
Vector storing the greedily selected parameters during SCM training.
RBThetaExpansion & get_rb_theta_expansion()
Get a reference to the RBThetaExpansion object.

◆ restrict_solve_to()

void libMesh::System::restrict_solve_to ( const SystemSubset subset,
const SubsetSolveMode  subset_solve_mode = SUBSET_ZERO 
)
virtualinherited

After calling this method, any solve will be restricted to the given subdomain.

To disable this mode, call this method with subset being a nullptr.

Reimplemented in libMesh::LinearImplicitSystem.

Definition at line 540 of file system.C.

542 {
543  if (subset != nullptr)
544  libmesh_not_implemented();
545 }

◆ restrict_vectors()

void libMesh::System::restrict_vectors ( )
virtualinherited

Restrict vectors after the mesh has coarsened.

Definition at line 378 of file system.C.

References libMesh::System::_dof_map, libMesh::System::_solution_projection, libMesh::System::_vector_projections, libMesh::System::_vectors, libMesh::System::current_local_solution, libMesh::NumericVector< T >::get(), libMesh::GHOSTED, libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::PARALLEL, libMesh::System::project_vector(), libMesh::System::solution, and libMesh::System::vector_is_adjoint().

Referenced by libMesh::System::prolong_vectors(), and libMesh::EquationSystems::reinit_solutions().

379 {
380  parallel_object_only();
381 
382 #ifdef LIBMESH_ENABLE_AMR
383  // Restrict the _vectors on the coarsened cells
384  for (auto & [vec_name, vec] : _vectors)
385  {
386  NumericVector<Number> * v = vec.get();
387 
388  if (_vector_projections[vec_name])
389  {
390  this->project_vector (*v, this->vector_is_adjoint(vec_name));
391  }
392  else
393  {
394  const ParallelType type = vec->type();
395 
396  if (type == GHOSTED)
397  {
398 #ifdef LIBMESH_ENABLE_GHOSTED
399  vec->init (this->n_dofs(), this->n_local_dofs(),
400  _dof_map->get_send_list(), /*fast=*/false,
401  GHOSTED);
402 #else
403  libmesh_error_msg("Cannot initialize ghosted vectors when they are not enabled.");
404 #endif
405  }
406  else
407  vec->init (this->n_dofs(), this->n_local_dofs(), false, type);
408  }
409  }
410 
411  const std::vector<dof_id_type> & send_list = _dof_map->get_send_list ();
412 
413  // Restrict the solution on the coarsened cells
415  this->project_vector (*solution);
416  // Or at least make sure the solution vector is the correct size
417  else
418  solution->init (this->n_dofs(), this->n_local_dofs(), true, PARALLEL);
419 
420 #ifdef LIBMESH_ENABLE_GHOSTED
421  current_local_solution->init(this->n_dofs(),
422  this->n_local_dofs(), send_list,
423  false, GHOSTED);
424 #else
425  current_local_solution->init(this->n_dofs());
426 #endif
427 
429  solution->localize (*current_local_solution, send_list);
430 
431 #endif // LIBMESH_ENABLE_AMR
432 }
int vector_is_adjoint(std::string_view vec_name) const
Definition: system.C:1120
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
dof_id_type n_local_dofs() const
Definition: system.C:150
dof_id_type n_dofs() const
Definition: system.C:113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
bool _solution_projection
Holds true if the solution vector should be projected onto a changed grid, false if it should be zero...
Definition: system.h:2198
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585
void project_vector(NumericVector< Number > &new_vector, FunctionBase< Number > *f, FunctionBase< Gradient > *g=nullptr, int is_adjoint=-1) const
Projects arbitrary functions onto a vector of degree of freedom values for the current system...
template class LIBMESH_EXPORT NumericVector< Number >
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170
ParallelType
Defines an enum for parallel data structure types.

◆ SCM_greedy_error_indicator()

virtual Real libMesh::RBSCMConstruction::SCM_greedy_error_indicator ( Real  LB,
Real  UB 
)
inlineprotectedvirtual

Helper function which provides an error indicator to be used in the SCM greedy.

Override in subclasses to specialize behavior.

Definition at line 224 of file rb_scm_construction.h.

Referenced by compute_SCM_bounds_on_training_set().

224 { return fabs(UB-LB)/fabs(UB); }

◆ sensitivity_solve()

std::pair< unsigned int, Real > libMesh::System::sensitivity_solve ( const ParameterVector parameters)
inlinevirtualinherited

Solves the sensitivity system, for the provided parameters.

Must be overridden in derived systems.

Returns
A pair with the total number of linear iterations performed and the (sum of the) final residual norms

This method is only implemented in some derived classes.

Reimplemented in libMesh::ImplicitSystem.

Definition at line 2527 of file system.h.

2528 {
2529  libmesh_not_implemented();
2530 }

◆ set_adjoint_already_solved()

void libMesh::System::set_adjoint_already_solved ( bool  setting)
inlineinherited

Setter for the adjoint_already_solved boolean.

Definition at line 412 of file system.h.

References libMesh::System::adjoint_already_solved.

Referenced by main().

413  { adjoint_already_solved = setting;}
bool adjoint_already_solved
Has the adjoint problem already been solved? If the user sets adjoint_already_solved to true...
Definition: system.h:2242

◆ set_basic_system_only()

void libMesh::System::set_basic_system_only ( )
inlineinherited

Sets the system to be "basic only": i.e.

advanced system components such as ImplicitSystem matrices may not be initialized. This is useful for efficiency in certain utility programs that never use System::solve(). This method must be called after the System or derived class is created but before it is initialized; e.g. from within EquationSystems::read()

Definition at line 2341 of file system.h.

References libMesh::System::_basic_system_only.

Referenced by libMesh::EquationSystems::read().

2342 {
2343  _basic_system_only = true;
2344 }
bool _basic_system_only
Holds true if the components of more advanced system types (e.g.
Definition: system.h:2204

◆ set_deterministic_training_parameter_name()

void libMesh::RBConstructionBase< CondensedEigenSystem >::set_deterministic_training_parameter_name ( const std::string &  name)
inherited

In some cases we only want to allow discrete parameter values, instead of parameters that may take any value in a specified interval.

Here we provide a method to set the d Set the discrete values for parameter mu that are allowed in the training set. This must be called before the training set is generated. Set the name of the parameter that we will generate deterministic training parameters for. Defaults to "NONE".

◆ set_eigenproblem_type()

void libMesh::EigenSystem::set_eigenproblem_type ( EigenProblemType  ept)
inherited

Sets the type of the current eigen problem.

Definition at line 85 of file eigen_system.C.

References libMesh::EigenSystem::_eigen_problem_type, libMesh::System::can_add_matrices(), libMesh::EigenSystem::eigen_solver, libMesh::GHEP, libMesh::GHIEP, libMesh::GNHEP, libMesh::HEP, and libMesh::NHEP.

Referenced by main(), and RBSCMConstruction().

86 {
87  if (!can_add_matrices())
88  libmesh_error_msg("ERROR: Cannot change eigen problem type after system initialization");
89 
90  _eigen_problem_type = ept;
91 
92  eigen_solver->set_eigenproblem_type(ept);
93 
94  // libMesh::out << "The Problem type is set to be: " << std::endl;
95 
96  switch (_eigen_problem_type)
97  {
98  case HEP:
99  // libMesh::out << "Hermitian" << std::endl;
100  break;
101 
102  case NHEP:
103  // libMesh::out << "Non-Hermitian" << std::endl;
104  break;
105 
106  case GHEP:
107  // libMesh::out << "Generalized Hermitian" << std::endl;
108  break;
109 
110  case GNHEP:
111  // libMesh::out << "Generalized Non-Hermitian" << std::endl;
112  break;
113 
114  case GHIEP:
115  // libMesh::out << "Generalized indefinite Hermitian" << std::endl;
116  break;
117 
118  default:
119  // libMesh::out << "not properly specified" << std::endl;
120  libmesh_error_msg("Unrecognized _eigen_problem_type = " << _eigen_problem_type);
121  }
122 }
bool can_add_matrices() const
Definition: system.h:1914
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver, defining which interface, i.e solver package to use.
Definition: eigen_system.h:362
EigenProblemType _eigen_problem_type
The type of the eigenvalue problem.
Definition: eigen_system.h:407

◆ set_eigensolver_properties()

virtual void libMesh::RBSCMConstruction::set_eigensolver_properties ( int  )
inlinevirtual

This function is called before truth eigensolves in compute_SCM_bounding_box and evaluate_stability_constant.

Override it to set specific properties to optimize eigensolver performance. The argument refers to the operator index in compute_SCM_bounding_box; a negative value of the argument indicates we are not performing a bounding box solve.

Definition at line 133 of file rb_scm_construction.h.

Referenced by compute_SCM_bounding_box(), and evaluate_stability_constant().

133 {}

◆ set_initial_space()

void libMesh::EigenSystem::set_initial_space ( NumericVector< Number > &  initial_space_in)
inherited

Sets an initial eigen vector.

Definition at line 297 of file eigen_system.C.

References libMesh::EigenSystem::eigen_solver.

298 {
299  eigen_solver->set_initial_space (initial_space_in);
300 }
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver, defining which interface, i.e solver package to use.
Definition: eigen_system.h:362

◆ set_n_converged()

void libMesh::EigenSystem::set_n_converged ( unsigned int  nconv)
inlineprotectedinherited

Set the _n_converged_eigenpairs member, useful for subclasses of EigenSystem.

Definition at line 381 of file eigen_system.h.

References libMesh::EigenSystem::_n_converged_eigenpairs.

Referenced by libMesh::CondensedEigenSystem::solve().

382  { _n_converged_eigenpairs = nconv; }
unsigned int _n_converged_eigenpairs
The number of converged eigenpairs.
Definition: eigen_system.h:397

◆ set_n_iterations()

void libMesh::EigenSystem::set_n_iterations ( unsigned int  its)
inlineprotectedinherited

Set the _n_iterations member, useful for subclasses of EigenSystem.

Definition at line 388 of file eigen_system.h.

References libMesh::EigenSystem::_n_iterations.

Referenced by libMesh::CondensedEigenSystem::solve().

389  { _n_iterations = its;}
unsigned int _n_iterations
The number of iterations of the eigen solver algorithm.
Definition: eigen_system.h:402

◆ set_parameters()

bool libMesh::RBParametrized::set_parameters ( const RBParameters params)
inherited

Set the current parameters to params The parameters are checked for validity; an error is thrown if the number of parameters or samples is different than expected.

We

Returns
a boolean true if the new parameters are within the min/max range, and false otherwise (but the parameters are set regardless). Enabling the "verbose_mode" flag will also print more details.

Definition at line 141 of file rb_parametrized.C.

References libMesh::RBParametrized::check_if_valid_params(), libMesh::RBParametrized::parameters, and libMesh::RBParametrized::parameters_initialized.

Referenced by compute_SCM_bounds_on_training_set(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_interiors(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_nodes(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_sides(), libMesh::RBConstruction::get_RB_error_bound(), SimpleRBEvaluation::get_stability_lower_bound(), libMesh::RBParametrized::initialize_parameters(), libMesh::RBSCMEvaluation::reload_current_parameters(), libMesh::RBSCMEvaluation::set_current_parameters_from_C_J(), and RBParametersTest::testRBParametrized().

142 {
143  libmesh_error_msg_if(!parameters_initialized, "Error: parameters not initialized in RBParametrized::set_parameters");
144 
145  // Terminate if params has the wrong number of parameters or samples.
146  // If the parameters are outside the min/max range, return false.
147  const bool valid_params = check_if_valid_params(params);
148 
149  // Make a copy of params (default assignment operator just does memberwise copy, which is sufficient here)
150  this->parameters = params;
151 
152  return valid_params;
153 }
bool parameters_initialized
Flag indicating whether the parameters have been initialized.
bool check_if_valid_params(const RBParameters &params) const
Helper function to check that params is valid:
RBParameters parameters
Vector storing the current parameters.

◆ set_params_from_training_set()

void libMesh::RBConstructionBase< CondensedEigenSystem >::set_params_from_training_set ( unsigned int  global_index)
protectedinherited

Set parameters to the RBParameters stored in index global_index of the global training set.

Definition at line 218 of file rb_construction_base.C.

Referenced by compute_SCM_bounds_on_training_set().

219 {
221 }
bool set_parameters(const RBParameters &params)
Set the current parameters to params The parameters are checked for validity; an error is thrown if t...
RBParameters get_params_from_training_set(unsigned int global_index)
Return the RBParameters in index global_index of the global training set.

◆ set_params_from_training_set_and_broadcast()

void libMesh::RBConstructionBase< CondensedEigenSystem >::set_params_from_training_set_and_broadcast ( unsigned int  global_index)
protectedvirtualinherited

Load the specified training parameter and then broadcast to all processors.

Definition at line 263 of file rb_construction_base.C.

Referenced by enrich_C_J().

264 {
265  libmesh_error_msg_if(!_training_parameters_initialized,
266  "Error: training parameters must first be initialized.");
267 
268  processor_id_type root_id = 0;
269  if ((this->get_first_local_training_index() <= global_index) &&
270  (global_index < this->get_last_local_training_index()))
271  {
272  // Set parameters on only one processor
273  set_params_from_training_set(global_index);
274 
275  // set root_id, only non-zero on one processor
276  root_id = this->processor_id();
277  }
278 
279  // broadcast
280  this->comm().max(root_id);
281  broadcast_parameters(root_id);
282 }
numeric_index_type get_first_local_training_index() const
Get the first local index of the training parameters.
const Parallel::Communicator & comm() const
void broadcast_parameters(const unsigned int proc_id)
Broadcasts parameters from processor proc_id to all processors.
uint8_t processor_id_type
numeric_index_type get_last_local_training_index() const
Get the last local index of the training parameters.
void set_params_from_training_set(unsigned int global_index)
Set parameters to the RBParameters stored in index global_index of the global training set...
void max(const T &r, T &o, Request &req) const
processor_id_type processor_id() const
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ set_project_with_constraints()

void libMesh::System::set_project_with_constraints ( bool  _project_with_constraints)
inlineinherited

Definition at line 1780 of file system.h.

References libMesh::System::project_with_constraints.

Referenced by libMesh::AdjointRefinementEstimator::estimate_error().

1781  {
1782  project_with_constraints = _project_with_constraints;
1783  }
bool project_with_constraints
Do we want to apply constraints while projecting vectors ?
Definition: system.h:2253

◆ set_qoi() [1/2]

void libMesh::System::set_qoi ( unsigned int  qoi_index,
Number  qoi_value 
)
inherited

Definition at line 2326 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::qoi.

Referenced by libMesh::ExplicitSystem::assemble_qoi(), libMesh::FEMSystem::assemble_qoi(), libMesh::Euler2Solver::integrate_qoi_timestep(), libMesh::TwostepTimeSolver::integrate_qoi_timestep(), and libMesh::EulerSolver::integrate_qoi_timestep().

2327 {
2328  libmesh_assert(qoi_index < qoi.size());
2329 
2330  qoi[qoi_index] = qoi_value;
2331 }
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611
libmesh_assert(ctx)

◆ set_qoi() [2/2]

void libMesh::System::set_qoi ( std::vector< Number new_qoi)
inherited

Definition at line 2347 of file system.C.

References libMesh::System::qoi.

2348 {
2349  libmesh_assert_equal_to(this->qoi.size(), new_qoi.size());
2350  this->qoi = std::move(new_qoi);
2351 }
std::vector< Number > qoi
Values of the quantities of interest.
Definition: system.h:1611

◆ set_qoi_error_estimate()

void libMesh::System::set_qoi_error_estimate ( unsigned int  qoi_index,
Number  qoi_error_estimate 
)
inherited

Definition at line 2354 of file system.C.

References libMesh::libmesh_assert(), and libMesh::System::qoi_error_estimates.

Referenced by libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::TwostepTimeSolver::integrate_adjoint_refinement_error_estimate(), and libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate().

2355 {
2356  libmesh_assert(qoi_index < qoi_error_estimates.size());
2357 
2358  qoi_error_estimates[qoi_index] = qoi_error_estimate;
2359 }
libmesh_assert(ctx)
std::vector< Number > qoi_error_estimates
Vector to hold error estimates for qois, either from a steady state calculation, or from a single uns...
Definition: system.h:1619

◆ set_quiet_mode()

void libMesh::RBConstructionBase< CondensedEigenSystem >::set_quiet_mode ( bool  quiet_mode_in)
inlineinherited

Set the quiet_mode flag.

If quiet == false then we print out a lot of extra information during the Offline stage.

Definition at line 100 of file rb_construction_base.h.

References libMesh::RBConstructionBase< Base >::quiet_mode.

101  { this->quiet_mode = quiet_mode_in; }
bool quiet_mode
Flag to indicate whether we print out extra information during the Offline stage. ...

◆ set_rb_scm_evaluation()

void libMesh::RBSCMConstruction::set_rb_scm_evaluation ( RBSCMEvaluation rb_scm_eval_in)

Set the RBSCMEvaluation object.

Definition at line 72 of file rb_scm_construction.C.

References rb_scm_eval.

73 {
74  rb_scm_eval = &rb_scm_eval_in;
75 }
RBSCMEvaluation * rb_scm_eval
The current RBSCMEvaluation object we are using to perform the Evaluation stage of the SCM...

◆ set_RB_system_name()

void libMesh::RBSCMConstruction::set_RB_system_name ( const std::string &  new_name)
inline

Set the name of the associated RB system — we need this to load the (symmetrized) affine operators.

Definition at line 139 of file rb_scm_construction.h.

References RB_system_name.

Referenced by main().

140  { RB_system_name = new_name; }
std::string RB_system_name
The name of the associated RB system.

◆ set_SCM_training_tolerance()

void libMesh::RBSCMConstruction::set_SCM_training_tolerance ( Real  SCM_training_tolerance_in)
inline

Definition at line 146 of file rb_scm_construction.h.

References SCM_training_tolerance.

Referenced by process_parameters_file().

146 { this->SCM_training_tolerance = SCM_training_tolerance_in; }
Real SCM_training_tolerance
Tolerance which controls when to terminate the SCM Greedy.

◆ set_training_parameter_values()

void libMesh::RBConstructionBase< CondensedEigenSystem >::set_training_parameter_values ( const std::string &  param_name,
const std::vector< RBParameter > &  values 
)
inherited

Overwrite the local training samples for param_name using values.

This assumes that values.size() matches get_local_n_training_samples().

Definition at line 448 of file rb_construction_base.C.

450 {
451  libmesh_error_msg_if(!_training_parameters_initialized,
452  "Training parameters must be initialized before calling set_training_parameter_values");
453  libmesh_error_msg_if(values.size() != get_local_n_training_samples(),
454  "Inconsistent sizes");
455 
456  // Copy the new data, overwriting the old data.
457  auto & training_vector = libmesh_map_find(_training_parameters, param_name);
458  training_vector = values;
459 }
numeric_index_type get_local_n_training_samples() const
Get the total number of training samples local to this processor.
std::map< std::string, std::vector< RBParameter > > _training_parameters
The training samples for each parameter.
bool _training_parameters_initialized
Boolean flag to indicate whether or not the parameter ranges have been initialized.

◆ set_training_random_seed()

void libMesh::RBConstructionBase< CondensedEigenSystem >::set_training_random_seed ( int  seed)
inherited

Set the seed that is used to randomly generate training parameters.

Definition at line 772 of file rb_construction_base.C.

Referenced by process_parameters_file().

773 {
775 }
int _training_parameters_random_seed
If < 0, use std::time() * processor_id() to seed the random number generator for the training paramet...

◆ set_vector_as_adjoint()

void libMesh::System::set_vector_as_adjoint ( const std::string &  vec_name,
int  qoi_num 
)
inherited

Allows one to set the QoI index controlling whether the vector identified by vec_name represents a solution from the adjoint (qoi_num >= 0) or primal (qoi_num == -1) space.

This becomes significant if those spaces have differing heterogeneous Dirichlet constraints.

qoi_num == -2 can be used to indicate a vector which should not be affected by constraints during projection operations.

Definition at line 1107 of file system.C.

References libMesh::System::_vector_is_adjoint.

Referenced by libMesh::System::add_adjoint_solution(), and libMesh::System::add_weighted_sensitivity_adjoint_solution().

1109 {
1110  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1111 
1112  // We reserve -1 for vectors which get primal constraints, -2 for
1113  // vectors which get no constraints
1114  libmesh_assert_greater_equal(qoi_num, -2);
1115  _vector_is_adjoint[vec_name] = qoi_num;
1116 }
std::map< std::string, int, std::less<> > _vector_is_adjoint
Holds non-negative if a vector by that name should be projected using adjoint constraints/BCs, -1 if primal.
Definition: system.h:2176

◆ set_vector_preservation()

void libMesh::System::set_vector_preservation ( const std::string &  vec_name,
bool  preserve 
)
inherited

Allows one to set the boolean controlling whether the vector identified by vec_name should be "preserved": projected to new meshes, saved, etc.

Definition at line 1087 of file system.C.

References libMesh::System::_vector_projections.

Referenced by libMesh::AdjointRefinementEstimator::estimate_error(), and main().

1089 {
1090  parallel_object_only(); // Not strictly needed, but the only safe way to keep in sync
1091 
1092  _vector_projections[vec_name] = preserve;
1093 }
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ solve()

void libMesh::CondensedEigenSystem::solve ( )
overridevirtualinherited

Override to solve the condensed eigenproblem with the dofs in local_non_condensed_dofs_vector stripped out of the system matrices on each processor.

Reimplemented from libMesh::EigenSystem.

Definition at line 92 of file condensed_eigen_system.C.

References libMesh::System::assemble(), libMesh::System::assemble_before_solve, libMesh::SparseMatrix< T >::close(), libMesh::CondensedEigenSystem::condensed_dofs_initialized, libMesh::CondensedEigenSystem::condensed_matrix_A, libMesh::CondensedEigenSystem::condensed_matrix_B, libMesh::SparseMatrix< T >::create_submatrix(), libMesh::EigenSystem::eigen_solver, libMesh::EigenSystem::generalized(), libMesh::Parameters::get(), libMesh::System::get_equation_systems(), libMesh::Parameters::have_parameter(), libMesh::libmesh_assert(), libMesh::CondensedEigenSystem::local_non_condensed_dofs_vector, libMesh::EigenSystem::matrix_A, libMesh::EigenSystem::matrix_B, libMesh::EquationSystems::parameters, libMesh::Real, libMesh::EigenSystem::set_n_converged(), libMesh::EigenSystem::set_n_iterations(), and libMesh::EigenSystem::solve().

Referenced by compute_SCM_bounding_box(), evaluate_stability_constant(), and main().

93 {
94  LOG_SCOPE("solve()", "CondensedEigenSystem");
95 
96  // If we haven't initialized any condensed dofs,
97  // just use the default eigen_system
99  {
100  Parent::solve();
101  return;
102  }
103 
104  // A reference to the EquationSystems
105  EquationSystems & es = this->get_equation_systems();
106 
107  // check that necessary parameters have been set
108  libmesh_assert (es.parameters.have_parameter<unsigned int>("eigenpairs"));
109  libmesh_assert (es.parameters.have_parameter<unsigned int>("basis vectors"));
110 
111  if (this->assemble_before_solve)
112  {
113  // Assemble the linear system
114  this->assemble ();
115 
116  // And close the assembled matrices; using a non-closed matrix
117  // with create_submatrix() is deprecated.
118  matrix_A->close();
119  if (generalized())
120  matrix_B->close();
121  }
122 
123  // If we reach here, then there should be some non-condensed dofs
125 
126  // Now condense the matrices
130 
131  if (generalized())
132  {
136  }
137 
138 
139  // Get the tolerance for the solver and the maximum
140  // number of iterations. Here, we simply adopt the linear solver
141  // specific parameters.
142  const double tol =
143  double(es.parameters.get<Real>("linear solver tolerance"));
144 
145  const unsigned int maxits =
146  es.parameters.get<unsigned int>("linear solver maximum iterations");
147 
148  const unsigned int nev =
149  es.parameters.get<unsigned int>("eigenpairs");
150 
151  const unsigned int ncv =
152  es.parameters.get<unsigned int>("basis vectors");
153 
154  std::pair<unsigned int, unsigned int> solve_data;
155 
156  // call the solver depending on the type of eigenproblem
157  if (generalized())
158  {
159  //in case of a generalized eigenproblem
160  solve_data = eigen_solver->solve_generalized
161  (*condensed_matrix_A,*condensed_matrix_B, nev, ncv, tol, maxits);
162  }
163 
164  else
165  {
167 
168  //in case of a standard eigenproblem
169  solve_data = eigen_solver->solve_standard (*condensed_matrix_A, nev, ncv, tol, maxits);
170  }
171 
172  set_n_converged(solve_data.first);
173  set_n_iterations(solve_data.second);
174 }
bool generalized() const
Definition: eigen_system.C:303
virtual void create_submatrix(SparseMatrix< T > &submatrix, const std::vector< numeric_index_type > &rows, const std::vector< numeric_index_type > &cols) const
This function creates a matrix called "submatrix" which is defined by the row and column indices give...
SparseMatrix< Number > * matrix_B
A second system matrix for generalized eigenvalue problems.
Definition: eigen_system.h:321
const EquationSystems & get_equation_systems() const
Definition: system.h:730
virtual void assemble()
Prepares matrix and _dof_map for matrix assembly.
Definition: system.C:549
SparseMatrix< Number > * condensed_matrix_B
A second (condensed) system matrix for generalized eigenvalue problems.
SparseMatrix< Number > * condensed_matrix_A
The (condensed) system matrix for standard eigenvalue problems.
void set_n_iterations(unsigned int its)
Set the _n_iterations member, useful for subclasses of EigenSystem.
Definition: eigen_system.h:388
libmesh_assert(ctx)
SparseMatrix< Number > * matrix_A
The system matrix for standard eigenvalue problems.
Definition: eigen_system.h:313
void set_n_converged(unsigned int nconv)
Set the _n_converged_eigenpairs member, useful for subclasses of EigenSystem.
Definition: eigen_system.h:381
virtual void solve() override
Assembles & solves the eigen system.
Definition: eigen_system.C:209
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::unique_ptr< EigenSolver< Number > > eigen_solver
The EigenSolver, defining which interface, i.e solver package to use.
Definition: eigen_system.h:362
std::vector< dof_id_type > local_non_condensed_dofs_vector
Vector storing the local dof indices that will not be condensed.
bool condensed_dofs_initialized
A private flag to indicate whether the condensed dofs have been initialized.
bool assemble_before_solve
Flag which tells the system to whether or not to call the user assembly function during each call to ...
Definition: system.h:1527

◆ solve_for_unconstrained_dofs()

void libMesh::System::solve_for_unconstrained_dofs ( NumericVector< Number > &  vec,
int  is_adjoint = -1 
) const
protectedinherited

Definition at line 2032 of file system_projection.C.

References libMesh::DofMap::build_sparsity(), libMesh::DofMap::computed_sparsity_already(), libMesh::DofMap::end_dof(), libMesh::DofMap::first_dof(), libMesh::NumericVector< T >::get(), libMesh::DofMap::heterogenously_constrain_element_matrix_and_vector(), libMesh::DofMap::is_constrained_dof(), libMesh::NumericVector< T >::local_size(), libMesh::DofMap::n_dofs(), libMesh::DofMap::n_local_dofs(), libMesh::PARALLEL, libMesh::Real, libMesh::NumericVector< T >::size(), and libMesh::DofMap::update_sparsity_pattern().

2034 {
2035  const DofMap & dof_map = this->get_dof_map();
2036 
2037  std::unique_ptr<SparseMatrix<Number>> mat =
2039 
2040  std::unique_ptr<SparsityPattern::Build> sp;
2041 
2042  if (dof_map.computed_sparsity_already())
2043  dof_map.update_sparsity_pattern(*mat);
2044  else
2045  {
2046  mat->attach_dof_map(dof_map);
2047  sp = dof_map.build_sparsity(this->get_mesh());
2048  mat->attach_sparsity_pattern(*sp);
2049  }
2050 
2051  mat->init();
2052 
2053  libmesh_assert_equal_to(vec.size(), dof_map.n_dofs());
2054  libmesh_assert_equal_to(vec.local_size(), dof_map.n_local_dofs());
2055 
2056  std::unique_ptr<NumericVector<Number>> rhs =
2058 
2059  rhs->init(dof_map.n_dofs(), dof_map.n_local_dofs(), false,
2060  PARALLEL);
2061 
2062  // Here we start with the unconstrained (and indeterminate) linear
2063  // system, K*u = f, where K is the identity matrix for constrained
2064  // DoFs and 0 elsewhere, and f is the current solution values for
2065  // constrained DoFs and 0 elsewhere.
2066  // We then apply the usual heterogeneous constraint matrix C and
2067  // offset h, where u = C*x + h,
2068  // to get C^T*K*C*x = C^T*f - C^T*K*h
2069  // - a constrained and no-longer-singular system that finds the
2070  // closest approximation for the unconstrained degrees of freedom.
2071  //
2072  // Here, though "closest" is in an algebraic sense; we're
2073  // effectively using a pseudoinverse that optimizes in a
2074  // discretization-dependent norm. That only seems to give ~0.1%
2075  // excess error even in coarse unit test cases, but at some point it
2076  // might be reasonable to weight K and f properly.
2077 
2078  for (dof_id_type d : IntRange<dof_id_type>(dof_map.first_dof(),
2079  dof_map.end_dof()))
2080  {
2081  if (dof_map.is_constrained_dof(d))
2082  {
2083  DenseMatrix<Number> K(1,1);
2084  DenseVector<Number> F(1);
2085  std::vector<dof_id_type> dof_indices(1, d);
2086  K(0,0) = 1;
2087  F(0) = (*this->solution)(d);
2088  dof_map.heterogenously_constrain_element_matrix_and_vector
2089  (K, F, dof_indices, false, is_adjoint);
2090  mat->add_matrix(K, dof_indices);
2091  rhs->add_vector(F, dof_indices);
2092  }
2093  }
2094 
2095  std::unique_ptr<LinearSolver<Number>> linear_solver =
2097 
2098  linear_solver->solve(*mat, vec, *rhs,
2099  double(this->get_equation_systems().parameters.get<Real>("linear solver tolerance")),
2100  this->get_equation_systems().parameters.get<unsigned int>("linear solver maximum iterations"));
2101 }
static std::unique_ptr< LinearSolver< T > > build(const libMesh::Parallel::Communicator &comm_in, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a LinearSolver using the linear solver package specified by solver_package.
Definition: linear_solver.C:59
virtual numeric_index_type size() const =0
const EquationSystems & get_equation_systems() const
Definition: system.h:730
const Parallel::Communicator & comm() const
const MeshBase & get_mesh() const
Definition: system.h:2277
static std::unique_ptr< SparseMatrix< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package(), const MatrixBuildType matrix_build_type=MatrixBuildType::AUTOMATIC)
Builds a SparseMatrix<T> using the linear solver package specified by solver_package.
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
static std::unique_ptr< NumericVector< T > > build(const Parallel::Communicator &comm, const SolverPackage solver_package=libMesh::default_solver_package())
Builds a NumericVector on the processors in communicator comm using the linear solver package specifi...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual numeric_index_type local_size() const =0
const DofMap & get_dof_map() const
Definition: system.h:2293
uint8_t dof_id_type
Definition: id_types.h:67

◆ system()

Returns
A reference to *this.

Definition at line 87 of file rb_construction_base.h.

87 { return *this; }

◆ system_type()

virtual std::string libMesh::EigenSystem::system_type ( ) const
inlineoverridevirtualinherited
Returns
"Eigen". Helps in identifying the system type in an equation system file.

Reimplemented from libMesh::System.

Definition at line 125 of file eigen_system.h.

125 { return "Eigen"; }

◆ update()

void libMesh::System::update ( )
virtualinherited

Update the local values to reflect the solution on neighboring processors.

Reimplemented in SolidSystem.

Definition at line 493 of file system.C.

References libMesh::System::_dof_map, libMesh::System::current_local_solution, libMesh::libmesh_assert(), and libMesh::System::solution.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::UniformRefinementEstimator::_estimate_error(), HDGProblem::assemble(), libMesh::FEMSystem::assemble_qoi(), libMesh::FEMSystem::assemble_qoi_derivative(), libMesh::NonlinearImplicitSystem::assembly(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::NewmarkSolver::compute_initial_accel(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::GMVIO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), DMlibMeshFunction(), DMlibMeshJacobian(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::CondensedEigenSystem::get_eigenpair(), libMesh::TransientRBConstruction::initialize_truth(), libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::NewtonSolver::line_search(), libMesh::RBConstruction::load_basis_function(), libMesh::TransientRBConstruction::load_rb_solution(), libMesh::RBConstruction::load_rb_solution(), main(), libMesh::FEMSystem::mesh_position_get(), HeatSystem::perturb_accumulate_residuals(), libMesh::FEMSystem::postprocess(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::MemorySolutionHistory::retrieve(), libMesh::FileSolutionHistory::retrieve(), libMesh::NewtonSolver::solve(), libMesh::ExplicitSystem::solve(), libMesh::LinearImplicitSystem::solve(), libMesh::OptimizationSystem::solve(), libMesh::NonlinearImplicitSystem::solve(), libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::MeshFunctionSolutionTransfer::transfer(), and libMesh::DirectSolutionTransfer::transfer().

494 {
495  parallel_object_only();
496 
497  libmesh_assert(solution->closed());
498 
499  const std::vector<dof_id_type> & send_list = _dof_map->get_send_list ();
500 
501  // Check sizes
502  libmesh_assert_equal_to (current_local_solution->size(), solution->size());
503  // More processors than elements => empty send_list
504  // libmesh_assert (!send_list.empty());
505  libmesh_assert_less_equal (send_list.size(), solution->size());
506 
507  // Create current_local_solution from solution. This will
508  // put a local copy of solution into current_local_solution.
509  // Only the necessary values (specified by the send_list)
510  // are copied to minimize communication
511  solution->localize (*current_local_solution, send_list);
512 }
std::unique_ptr< DofMap > _dof_map
Data structure describing the relationship between nodes, variables, etc...
Definition: system.h:2113
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
std::unique_ptr< NumericVector< Number > > current_local_solution
All the values I need to compute my contribution to the simulation at hand.
Definition: system.h:1585

◆ update_global_solution() [1/2]

void libMesh::System::update_global_solution ( std::vector< Number > &  global_soln) const
inherited

Fill the input vector global_soln so that it contains the global solution on all processors.

Requires communication with all other processors.

Definition at line 728 of file system.C.

References libMesh::System::solution.

Referenced by libMesh::ExactSolution::_compute_error(), libMesh::ExactErrorEstimator::estimate_error(), main(), and libMesh::InterMeshProjection::project_system_vectors().

729 {
730  parallel_object_only();
731 
732  global_soln.resize (solution->size());
733 
734  solution->localize (global_soln);
735 }
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573

◆ update_global_solution() [2/2]

void libMesh::System::update_global_solution ( std::vector< Number > &  global_soln,
const processor_id_type  dest_proc 
) const
inherited

Fill the input vector global_soln so that it contains the global solution on processor dest_proc.

Requires communication with all other processors.

Definition at line 739 of file system.C.

References libMesh::System::solution.

741 {
742  parallel_object_only();
743 
744  global_soln.resize (solution->size());
745 
746  solution->localize_to_one (global_soln, dest_proc);
747 }
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573

◆ use_shell_matrices() [1/2]

bool libMesh::EigenSystem::use_shell_matrices ( ) const
inlineinherited
Returns
true if the shell matrices are used

Definition at line 161 of file eigen_system.h.

References libMesh::EigenSystem::_use_shell_matrices.

161 { return _use_shell_matrices; }
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ use_shell_matrices() [2/2]

void libMesh::EigenSystem::use_shell_matrices ( bool  use_shell_matrices)
inlineinherited

Set a flag to use shell matrices.

Definition at line 166 of file eigen_system.h.

References libMesh::EigenSystem::_use_shell_matrices, and libMesh::EigenSystem::use_shell_matrices().

Referenced by libMesh::EigenSystem::use_shell_matrices().

bool use_shell_matrices() const
Definition: eigen_system.h:161
bool _use_shell_matrices
A boolean flag to indicate whether or not to use shell matrices.
Definition: eigen_system.h:412

◆ use_shell_precond_matrix() [1/2]

bool libMesh::EigenSystem::use_shell_precond_matrix ( ) const
inlineinherited
Returns
true if a shell preconditioning matrix is used

Definition at line 171 of file eigen_system.h.

References libMesh::EigenSystem::_use_shell_precond_matrix.

171 { return _use_shell_precond_matrix; }
bool _use_shell_precond_matrix
A boolean flag to indicate whether or not to use a shell preconditioning matrix.
Definition: eigen_system.h:417

◆ use_shell_precond_matrix() [2/2]

void libMesh::EigenSystem::use_shell_precond_matrix ( bool  use_shell_precond_matrix)
inlineinherited

Set a flag to use a shell preconditioning matrix.

Definition at line 176 of file eigen_system.h.

References libMesh::EigenSystem::_use_shell_precond_matrix, and libMesh::EigenSystem::use_shell_precond_matrix().

Referenced by libMesh::EigenSystem::use_shell_precond_matrix().

bool use_shell_precond_matrix() const
Definition: eigen_system.h:171
bool _use_shell_precond_matrix
A boolean flag to indicate whether or not to use a shell preconditioning matrix.
Definition: eigen_system.h:417

◆ user_assembly()

void libMesh::System::user_assembly ( )
virtualinherited

Calls user's attached assembly function, or is overridden by the user in derived classes.

Definition at line 2259 of file system.C.

References libMesh::System::_assemble_system_function, libMesh::System::_assemble_system_object, libMesh::System::_equation_systems, libMesh::System::Assembly::assemble(), and libMesh::System::name().

Referenced by libMesh::System::assemble().

2260 {
2261  // Call the user-provided assembly function,
2262  // if it was provided
2263  if (_assemble_system_function != nullptr)
2265 
2266  // ...or the user-provided assembly object.
2267  else if (_assemble_system_object != nullptr)
2269 }
Assembly * _assemble_system_object
Object that assembles the system.
Definition: system.h:2070
virtual void assemble()=0
Assembly function.
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
const std::string & name() const
Definition: system.h:2261
void(* _assemble_system_function)(EquationSystems &es, const std::string &name)
Function that assembles the system.
Definition: system.h:2064

◆ user_constrain()

void libMesh::System::user_constrain ( )
virtualinherited

Calls user's attached constraint function, or is overridden by the user in derived classes.

Definition at line 2273 of file system.C.

References libMesh::System::_constrain_system_function, libMesh::System::_constrain_system_object, libMesh::System::_equation_systems, libMesh::System::Constraint::constrain(), and libMesh::System::name().

Referenced by libMesh::System::reinit_constraints().

2274 {
2275  // Call the user-provided constraint function,
2276  // if it was provided
2277  if (_constrain_system_function!= nullptr)
2279 
2280  // ...or the user-provided constraint object.
2281  else if (_constrain_system_object != nullptr)
2283 }
void(* _constrain_system_function)(EquationSystems &es, const std::string &name)
Function to impose constraints.
Definition: system.h:2075
Constraint * _constrain_system_object
Object that constrains the system.
Definition: system.h:2081
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
virtual void constrain()=0
Constraint function.
const std::string & name() const
Definition: system.h:2261

◆ user_initialization()

void libMesh::System::user_initialization ( )
virtualinherited

Calls user's attached initialization function, or is overridden by the user in derived classes.

Definition at line 2245 of file system.C.

References libMesh::System::_equation_systems, libMesh::System::_init_system_function, libMesh::System::_init_system_object, libMesh::System::Initialization::initialize(), and libMesh::System::name().

Referenced by libMesh::System::init(), libMesh::NewmarkSystem::initial_conditions(), and libMesh::System::reinit_mesh().

2246 {
2247  // Call the user-provided initialization function,
2248  // if it was provided
2249  if (_init_system_function != nullptr)
2250  this->_init_system_function (_equation_systems, this->name());
2251 
2252  // ...or the user-provided initialization object.
2253  else if (_init_system_object != nullptr)
2255 }
virtual void initialize()=0
Initialization function.
Initialization * _init_system_object
Object that initializes the system.
Definition: system.h:2059
void(* _init_system_function)(EquationSystems &es, const std::string &name)
Function that initializes the system.
Definition: system.h:2053
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
const std::string & name() const
Definition: system.h:2261

◆ user_QOI()

void libMesh::System::user_QOI ( const QoISet qoi_indices)
virtualinherited

Calls user's attached quantity of interest function, or is overridden by the user in derived classes.

Definition at line 2287 of file system.C.

References libMesh::System::_equation_systems, libMesh::System::_qoi_evaluate_function, libMesh::System::_qoi_evaluate_object, libMesh::System::name(), and libMesh::System::QOI::qoi().

Referenced by libMesh::System::assemble_qoi().

2288 {
2289  // Call the user-provided quantity of interest function,
2290  // if it was provided
2291  if (_qoi_evaluate_function != nullptr)
2292  this->_qoi_evaluate_function(_equation_systems, this->name(), qoi_indices);
2293 
2294  // ...or the user-provided QOI function object.
2295  else if (_qoi_evaluate_object != nullptr)
2296  this->_qoi_evaluate_object->qoi(qoi_indices);
2297 }
void(* _qoi_evaluate_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices)
Function to evaluate quantity of interest.
Definition: system.h:2086
virtual void qoi(const QoISet &qoi_indices)=0
Quantity of interest function.
QOI * _qoi_evaluate_object
Object to compute quantities of interest.
Definition: system.h:2093
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
const std::string & name() const
Definition: system.h:2261

◆ user_QOI_derivative()

void libMesh::System::user_QOI_derivative ( const QoISet qoi_indices = QoISet(),
bool  include_liftfunc = true,
bool  apply_constraints = true 
)
virtualinherited

Calls user's attached quantity of interest derivative function, or is overridden by the user in derived classes.

Definition at line 2301 of file system.C.

References libMesh::System::_equation_systems, libMesh::System::_qoi_evaluate_derivative_function, libMesh::System::_qoi_evaluate_derivative_object, libMesh::System::name(), and libMesh::System::QOIDerivative::qoi_derivative().

Referenced by libMesh::System::assemble_qoi_derivative().

2304 {
2305  // Call the user-provided quantity of interest derivative,
2306  // if it was provided
2307  if (_qoi_evaluate_derivative_function != nullptr)
2309  (_equation_systems, this->name(), qoi_indices, include_liftfunc,
2310  apply_constraints);
2311 
2312  // ...or the user-provided QOI derivative function object.
2313  else if (_qoi_evaluate_derivative_object != nullptr)
2315  (qoi_indices, include_liftfunc, apply_constraints);
2316 }
QOIDerivative * _qoi_evaluate_derivative_object
Object to compute derivatives of quantities of interest.
Definition: system.h:2107
virtual void qoi_derivative(const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)=0
Quantity of interest derivative function.
EquationSystems & _equation_systems
Constant reference to the EquationSystems object used for the simulation.
Definition: system.h:2119
const std::string & name() const
Definition: system.h:2261
void(* _qoi_evaluate_derivative_function)(EquationSystems &es, const std::string &name, const QoISet &qoi_indices, bool include_liftfunc, bool apply_constraints)
Function to evaluate quantity of interest derivative.
Definition: system.h:2098

◆ variable()

const Variable & libMesh::System::variable ( unsigned int  var) const
inlineinherited

Return a constant reference to Variable var.

Definition at line 2377 of file system.h.

References libMesh::System::_variables.

Referenced by libMesh::ExactSolution::_compute_error(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::DifferentiableSystem::add_second_order_dot_vars(), libMesh::System::add_variable(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::FirstOrderUnsteadySolver::compute_second_order_eqns(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubFunctor::find_dofs_to_send(), libMesh::DifferentiableSystem::have_first_order_scalar_vars(), libMesh::DifferentiableSystem::have_second_order_scalar_vars(), main(), libMesh::DifferentiablePhysics::nonlocal_mass_residual(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SortAndCopy::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectEdges::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::System::read_parallel_data(), libMesh::System::read_SCALAR_dofs(), libMesh::System::read_serialized_vector(), libMesh::System::read_serialized_vectors(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::System::write_header(), libMesh::Nemesis_IO_Helper::write_nodal_solution(), libMesh::System::write_parallel_data(), libMesh::System::write_serialized_vector(), and libMesh::System::write_serialized_vectors().

2378 {
2379  libmesh_assert_less (i, _variables.size());
2380 
2381  return _variables[i];
2382 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140

◆ variable_group()

const VariableGroup & libMesh::System::variable_group ( unsigned int  vg) const
inlineinherited

Return a constant reference to VariableGroup vg.

Definition at line 2387 of file system.h.

References libMesh::System::_variable_groups.

Referenced by libMesh::FEMSystem::assembly(), libMesh::System::get_info(), and libMesh::System::init_data().

2388 {
2389  libmesh_assert_less (vg, _variable_groups.size());
2390 
2391  return _variable_groups[vg];
2392 }
std::vector< VariableGroup > _variable_groups
The VariableGroup in this System.
Definition: system.h:2145

◆ variable_name()

const std::string & libMesh::System::variable_name ( const unsigned int  i) const
inlineinherited

◆ variable_number()

unsigned int libMesh::System::variable_number ( std::string_view  var) const
inherited
Returns
The variable number associated with the user-specified variable named var.

Definition at line 1557 of file system.C.

References libMesh::System::_variable_numbers, libMesh::System::_variables, and libMesh::System::name().

Referenced by libMesh::ExactSolution::_compute_error(), alternative_fe_assembly(), LinearElasticity::assemble(), HDGProblem::assemble(), AssembleOptimization::assemble_A_and_F(), assemble_divgrad(), assemble_elasticity(), assemble_matrix_and_rhs(), assemble_shell(), assemble_stokes(), compute_enriched_soln(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::GMVIO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::ExactErrorEstimator::estimate_error(), fe_assembly(), libMesh::ExactErrorEstimator::find_squared_element_error(), CoupledSystemQoI::init_context(), LargeDeformationElasticity::jacobian(), line_print(), main(), LinearElasticityWithContact::move_mesh(), libMesh::System::read_header(), LargeDeformationElasticity::residual(), LinearElasticityWithContact::residual_and_jacobian(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), OverlappingTestBase::setup_coupling_matrix(), libMesh::DTKAdapter::update_variable_values(), libMesh::System::variable_scalar_number(), libMesh::System::variable_type(), libMesh::EnsightIO::write_scalar_ascii(), and libMesh::EnsightIO::write_vector_ascii().

1558 {
1559  auto var_num = libmesh_map_find(_variable_numbers, var);
1560  libmesh_assert_equal_to (_variables[var_num].name(), var);
1561  return var_num;
1562 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140
std::map< std::string, unsigned int, std::less<> > _variable_numbers
The variable numbers corresponding to user-specified names, useful for name-based lookups...
Definition: system.h:2151
const std::string & name() const
Definition: system.h:2261

◆ variable_scalar_number() [1/2]

unsigned int libMesh::System::variable_scalar_number ( std::string_view  var,
unsigned int  component 
) const
inlineinherited
Returns
An index, starting from 0 for the first component of the first variable, and incrementing for each component of each (potentially vector-valued) variable in the system in order. For systems with only scalar-valued variables, this will be the same as variable_number(var)

Irony: currently our only non-scalar-valued variable type is SCALAR.

Definition at line 2408 of file system.h.

References libMesh::System::variable_number().

Referenced by libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), libMesh::ExactErrorEstimator::find_squared_element_error(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectEdges::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), and libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()().

2410 {
2411  return variable_scalar_number(this->variable_number(var), component);
2412 }
unsigned int variable_scalar_number(std::string_view var, unsigned int component) const
Definition: system.h:2408
unsigned int variable_number(std::string_view var) const
Definition: system.C:1557

◆ variable_scalar_number() [2/2]

unsigned int libMesh::System::variable_scalar_number ( unsigned int  var_num,
unsigned int  component 
) const
inlineinherited
Returns
An index, starting from 0 for the first component of the first variable, and incrementing for each component of each (potentially vector-valued) variable in the system in order. For systems with only scalar-valued variables, this will be the same as var_num

Irony: currently our only non-scalar-valued variable type is SCALAR.

Definition at line 2418 of file system.h.

References libMesh::System::_variables.

2420 {
2421  return _variables[var_num].first_scalar_number() + component;
2422 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140

◆ variable_type() [1/2]

const FEType & libMesh::System::variable_type ( const unsigned int  i) const
inlineinherited

◆ variable_type() [2/2]

const FEType & libMesh::System::variable_type ( std::string_view  var) const
inlineinherited
Returns
The finite element type for variable var.

Definition at line 2437 of file system.h.

References libMesh::System::_variables, and libMesh::System::variable_number().

2438 {
2439  return _variables[this->variable_number(var)].type();
2440 }
std::vector< Variable > _variables
The Variable in this System.
Definition: system.h:2140
unsigned int variable_number(std::string_view var) const
Definition: system.C:1557

◆ vector_is_adjoint()

int libMesh::System::vector_is_adjoint ( std::string_view  vec_name) const
inherited
Returns
The integer describing whether the vector identified by vec_name represents a solution from an adjoint (non-negative) or the primal (-1) space.

Definition at line 1120 of file system.C.

References libMesh::System::_vector_is_adjoint, and libMesh::libmesh_assert().

Referenced by libMesh::InterMeshProjection::project_system_vectors(), and libMesh::System::restrict_vectors().

1121 {
1122  libmesh_assert(_vector_is_adjoint.find(vec_name) !=
1123  _vector_is_adjoint.end());
1124 
1125  return _vector_is_adjoint.find(vec_name)->second;
1126 }
std::map< std::string, int, std::less<> > _vector_is_adjoint
Holds non-negative if a vector by that name should be projected using adjoint constraints/BCs, -1 if primal.
Definition: system.h:2176
libmesh_assert(ctx)

◆ vector_name() [1/2]

const std::string & libMesh::System::vector_name ( const unsigned int  vec_num) const
inherited
Returns
The name of this system's additional vector number vec_num (where the vectors are counted starting with 0).

Definition at line 958 of file system.C.

References libMesh::System::_vectors, and libMesh::System::vectors_begin().

Referenced by libMesh::AdjointRefinementEstimator::estimate_error(), and main().

959 {
960  // If we don't have that many vectors, throw an error
961  libmesh_assert_less(vec_num, _vectors.size());
962 
963  // Otherwise return a reference to the vec_num'th vector name
964  auto it = vectors_begin();
965  std::advance(it, vec_num);
966  return it->first;
967 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483

◆ vector_name() [2/2]

const std::string & libMesh::System::vector_name ( const NumericVector< Number > &  vec_reference) const
inherited
Returns
The name of a system vector, given a reference to that vector

Definition at line 969 of file system.C.

References libMesh::System::_vectors, libMesh::NumericVector< T >::get(), libMesh::libmesh_assert(), libMesh::System::vectors_begin(), and libMesh::System::vectors_end().

970 {
971  // Linear search for a vector whose pointer matches vec_reference
972  auto it = std::find_if(vectors_begin(), vectors_end(),
973  [&vec_reference](const decltype(_vectors)::value_type & pr)
974  { return &vec_reference == pr.second.get(); });
975 
976  // Before returning, make sure we didn't loop till the end and not find any match
977  libmesh_assert (it != vectors_end());
978 
979  // Return the string associated with the current vector
980  return it->first;
981 }
vectors_iterator vectors_end()
End of vectors container.
Definition: system.h:2495
virtual void get(const std::vector< numeric_index_type > &index, T *values) const
Access multiple components at once.
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
vectors_iterator vectors_begin()
Beginning of vectors container.
Definition: system.h:2483
libmesh_assert(ctx)

◆ vector_preservation()

bool libMesh::System::vector_preservation ( std::string_view  vec_name) const
inherited
Returns
The boolean describing whether the vector identified by vec_name should be "preserved": projected to new meshes, saved, etc.

Definition at line 1097 of file system.C.

References libMesh::System::_vector_projections.

Referenced by libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::MemoryHistoryData::store_vectors(), SystemsTest::testAddVectorProjChange(), SystemsTest::testAddVectorTypeChange(), and SystemsTest::testPostInitAddVectorTypeChange().

1098 {
1099  if (_vector_projections.find(vec_name) == _vector_projections.end())
1100  return false;
1101 
1102  return _vector_projections.find(vec_name)->second;
1103 }
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ vectors_begin() [1/2]

System::vectors_iterator libMesh::System::vectors_begin ( )
inlineinherited

Beginning of vectors container.

Definition at line 2483 of file system.h.

References libMesh::System::_vectors.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::System::get_vector(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::System::request_vector(), libMesh::MemoryHistoryData::store_vectors(), and libMesh::System::vector_name().

2484 {
2485  return _vectors.begin();
2486 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ vectors_begin() [2/2]

System::const_vectors_iterator libMesh::System::vectors_begin ( ) const
inlineinherited

Beginning of vectors container.

Definition at line 2489 of file system.h.

References libMesh::System::_vectors.

2490 {
2491  return _vectors.begin();
2492 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ vectors_end() [1/2]

System::vectors_iterator libMesh::System::vectors_end ( )
inlineinherited

End of vectors container.

Definition at line 2495 of file system.h.

References libMesh::System::_vectors.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::MemoryHistoryData::store_vectors(), and libMesh::System::vector_name().

2496 {
2497  return _vectors.end();
2498 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ vectors_end() [2/2]

System::const_vectors_iterator libMesh::System::vectors_end ( ) const
inlineinherited

End of vectors container.

Definition at line 2501 of file system.h.

References libMesh::System::_vectors.

2502 {
2503  return _vectors.end();
2504 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164

◆ weighted_sensitivity_adjoint_solve()

std::pair< unsigned int, Real > libMesh::System::weighted_sensitivity_adjoint_solve ( const ParameterVector parameters,
const ParameterVector weights,
const QoISet qoi_indices = QoISet() 
)
inlinevirtualinherited

Assembles & solves the linear system(s) (dR/du)^T*z_w = sum(w_p*(d^2q/dudp - d^2R/dudp*z)), for those parameters p contained within parameters, weighted by the values w_p found within weights.

Assumes that adjoint_solve has already calculated z for each qoi in qoi_indices.

Returns
A pair with the total number of linear iterations performed and the (sum of the) final residual norms

This method is only implemented in some derived classes.

Reimplemented in libMesh::ImplicitSystem.

Definition at line 2549 of file system.h.

2552 {
2553  libmesh_not_implemented();
2554 }

◆ weighted_sensitivity_solve()

std::pair< unsigned int, Real > libMesh::System::weighted_sensitivity_solve ( const ParameterVector parameters,
const ParameterVector weights 
)
inlinevirtualinherited

Assembles & solves the linear system(s) (dR/du)*u_w = sum(w_p*-dR/dp), for those parameters p contained within parameters weighted by the values w_p found within weights.

Returns
A pair with the total number of linear iterations performed and the (sum of the) final residual norms

This method is only implemented in some derived classes.

Reimplemented in libMesh::ImplicitSystem.

Definition at line 2534 of file system.h.

2536 {
2537  libmesh_not_implemented();
2538 }

◆ write_header()

void libMesh::System::write_header ( Xdr io,
std::string_view  version,
const bool  write_additional_data 
) const
inherited

Writes the basic data header for this System.

This method implements the output of a System object, embedded in the output of an EquationSystems<T_sys>. This warrants some documentation. The output of this part consists of 5 sections:

for this system

5.) The number of variables in the system (unsigned int)

for each variable in the system

6.) The name of the variable (string)

6.1.) subdomain where the variable lives

7.) Combined in an FEType:

  • The approximation order(s) of the variable (Order Enum, cast to int/s)
  • The finite element family/ies of the variable (FEFamily Enum, cast to int/s)

end variable loop

8.) The number of additional vectors (unsigned int),

for each additional vector in the system object

9.) the name of the additional vector (string)

end system

Definition at line 1267 of file system_io.C.

References libMesh::System::_vector_projections, libMesh::System::_vectors, libMesh::Variable::active_subdomains(), libMesh::Xdr::data(), libMesh::FEType::family, libMesh::System::get_mesh(), libMesh::FEType::inf_map, libMesh::libmesh_assert(), libMesh::make_range(), libMesh::System::n_vars(), libMesh::System::n_vectors(), libMesh::System::name(), libMesh::FEType::order, libMesh::ParallelObject::processor_id(), libMesh::FEType::radial_family, libMesh::FEType::radial_order, libMesh::System::variable(), libMesh::System::variable_name(), libMesh::System::variable_type(), and libMesh::Xdr::writing().

Referenced by libMesh::RBEvaluation::write_out_vectors().

1270 {
1304  libmesh_assert (io.writing());
1305 
1306 
1307  // Only write the header information
1308  // if we are processor 0.
1309  if (this->get_mesh().processor_id() != 0)
1310  return;
1311 
1312  std::string comment;
1313 
1314  // 5.)
1315  // Write the number of variables in the system
1316 
1317  {
1318  // set up the comment
1319  comment = "# No. of Variables in System \"";
1320  comment += this->name();
1321  comment += "\"";
1322 
1323  unsigned int nv = this->n_vars();
1324  io.data (nv, comment);
1325  }
1326 
1327 
1328  for (auto var : make_range(this->n_vars()))
1329  {
1330  // 6.)
1331  // Write the name of the var-th variable
1332  {
1333  // set up the comment
1334  comment = "# Name, Variable No. ";
1335  comment += std::to_string(var);
1336  comment += ", System \"";
1337  comment += this->name();
1338  comment += "\"";
1339 
1340  std::string var_name = this->variable_name(var);
1341  io.data (var_name, comment);
1342  }
1343 
1344  // 6.1.) Variable subdomains
1345  {
1346  // set up the comment
1347  comment = "# Subdomains, Variable \"";
1348  comment += this->variable_name(var);
1349  comment += "\", System \"";
1350  comment += this->name();
1351  comment += "\"";
1352 
1353  const std::set<subdomain_id_type> & domains = this->variable(var).active_subdomains();
1354  std::vector<subdomain_id_type> domain_array;
1355  domain_array.assign(domains.begin(), domains.end());
1356  io.data (domain_array, comment);
1357  }
1358 
1359  // 7.)
1360  // Write the approximation order of the var-th variable
1361  // in this system
1362  {
1363  // set up the comment
1364  comment = "# Approximation Order, Variable \"";
1365  comment += this->variable_name(var);
1366  comment += "\", System \"";
1367  comment += this->name();
1368  comment += "\"";
1369 
1370  int order = static_cast<int>(this->variable_type(var).order);
1371  io.data (order, comment);
1372  }
1373 
1374 
1375 #ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
1376 
1377  // do the same for radial_order
1378  {
1379  comment = "# Radial Approximation Order, Variable \"";
1380  comment += this->variable_name(var);
1381  comment += "\", System \"";
1382  comment += this->name();
1383  comment += "\"";
1384 
1385  int rad_order = static_cast<int>(this->variable_type(var).radial_order);
1386  io.data (rad_order, comment);
1387  }
1388 
1389 #endif
1390 
1391  // Write the Finite Element type of the var-th variable
1392  // in this System
1393  {
1394  // set up the comment
1395  comment = "# FE Family, Variable \"";
1396  comment += this->variable_name(var);
1397  comment += "\", System \"";
1398  comment += this->name();
1399  comment += "\"";
1400 
1401  const FEType & type = this->variable_type(var);
1402  int fam = static_cast<int>(type.family);
1403  io.data (fam, comment);
1404 
1405 #ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
1406 
1407  comment = "# Radial FE Family, Variable \"";
1408  comment += this->variable_name(var);
1409  comment += "\", System \"";
1410  comment += this->name();
1411  comment += "\"";
1412 
1413  int radial_fam = static_cast<int>(type.radial_family);
1414  io.data (radial_fam, comment);
1415 
1416  comment = "# Infinite Mapping Type, Variable \"";
1417  comment += this->variable_name(var);
1418  comment += "\", System \"";
1419  comment += this->name();
1420  comment += "\"";
1421 
1422  int i_map = static_cast<int>(type.inf_map);
1423  io.data (i_map, comment);
1424 #endif
1425  }
1426  } // end of the variable loop
1427 
1428  // 8.)
1429  // Write the number of additional vectors in the System.
1430  // If write_additional_data==false, then write zero for
1431  // the number of additional vectors.
1432  {
1433  {
1434  // set up the comment
1435  comment = "# No. of Additional Vectors, System \"";
1436  comment += this->name();
1437  comment += "\"";
1438 
1439  unsigned int nvecs = write_additional_data ? this->n_vectors () : 0;
1440  io.data (nvecs, comment);
1441  }
1442 
1443  if (write_additional_data)
1444  {
1445  unsigned int cnt=0;
1446  for (const auto & [vec_name, vec] : _vectors)
1447  {
1448  // 9.)
1449  // write the name of the cnt-th additional vector
1450  const std::string dth_vector = std::to_string(cnt++)+"th vector";
1451  comment = "# Name of " + dth_vector;
1452  std::string nonconst_vec_name = vec_name; // Stupid XDR API
1453 
1454  io.data (nonconst_vec_name, comment);
1455  int vec_projection = _vector_projections.at(vec_name);
1456  comment = "# Whether to do projections for " + dth_vector;
1457  io.data (vec_projection, comment);
1458  int vec_type = vec->type();
1459  comment = "# Parallel type of " + dth_vector;
1460  io.data (vec_type, comment);
1461  }
1462  }
1463  }
1464 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
OrderWrapper radial_order
The approximation order in radial direction of the infinite element.
Definition: fe_type.h:240
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
OrderWrapper order
The approximation order of the element.
Definition: fe_type.h:201
const MeshBase & get_mesh() const
Definition: system.h:2277
const std::set< subdomain_id_type > & active_subdomains() const
Definition: variable.h:171
unsigned int n_vectors() const
Definition: system.h:2477
libmesh_assert(ctx)
const std::string & variable_name(const unsigned int i) const
Definition: system.h:2397
const FEType & variable_type(const unsigned int i) const
Definition: system.h:2427
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
const std::string & name() const
Definition: system.h:2261
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
std::map< std::string, bool, std::less<> > _vector_projections
Holds true if a vector by that name should be projected onto a changed grid, false if it should be ze...
Definition: system.h:2170

◆ write_parallel_data()

void libMesh::System::write_parallel_data ( Xdr io,
const bool  write_additional_data 
) const
inherited

Writes additional data, namely vectors, for this System.

This method may safely be called on a distributed-memory mesh. This method will create an individual file for each processor in the simulation where the local solution components for that processor will be stored.

This method implements the output of the vectors contained in this System object, embedded in the output of an EquationSystems<T_sys>.

9.) The global solution vector, re-ordered to be node-major (More on this later.)

for each additional vector in the object

10.) The global additional vector, re-ordered to be node-major (More on this later.)

Note that the actual IO is handled through the Xdr class (to be renamed later?) which provides a uniform interface to both the XDR (eXternal Data Representation) interface and standard ASCII output. Thus this one section of code will read XDR or ASCII files with no changes.

Definition at line 1468 of file system_io.C.

References libMesh::System::_vectors, libMesh::Xdr::data(), libMesh::FEType::family, libMesh::System::get_dof_map(), libMesh::System::get_mesh(), libMesh::DofObject::invalid_id, libMesh::libmesh_assert(), libMesh::make_range(), libMesh::ParallelObject::n_processors(), libMesh::System::n_vars(), libMesh::System::name(), libMesh::System::number(), libMesh::ParallelObject::processor_id(), libMesh::SCALAR, libMesh::DofMap::SCALAR_dof_indices(), libMesh::System::solution, libMesh::Variable::type(), libMesh::System::variable(), and libMesh::Xdr::writing().

1470 {
1490  // PerfLog pl("IO Performance",false);
1491  // pl.push("write_parallel_data");
1492  // std::size_t total_written_size = 0;
1493 
1494  std::string comment;
1495 
1496  libmesh_assert (io.writing());
1497 
1498  std::vector<Number> io_buffer; io_buffer.reserve(this->solution->local_size());
1499 
1500  // build the ordered nodes and element maps.
1501  // when writing/reading parallel files we need to iterate
1502  // over our nodes/elements in order of increasing global id().
1503  // however, this is not guaranteed to be ordering we obtain
1504  // by using the node_iterators/element_iterators directly.
1505  // so build a set, sorted by id(), that provides the ordering.
1506  // further, for memory economy build the set but then transfer
1507  // its contents to vectors, which will be sorted.
1508  std::vector<const DofObject *> ordered_nodes, ordered_elements;
1509  {
1510  std::set<const DofObject *, CompareDofObjectsByID>
1511  ordered_nodes_set (this->get_mesh().local_nodes_begin(),
1512  this->get_mesh().local_nodes_end());
1513 
1514  ordered_nodes.insert(ordered_nodes.end(),
1515  ordered_nodes_set.begin(),
1516  ordered_nodes_set.end());
1517  }
1518  {
1519  std::set<const DofObject *, CompareDofObjectsByID>
1520  ordered_elements_set (this->get_mesh().local_elements_begin(),
1521  this->get_mesh().local_elements_end());
1522 
1523  ordered_elements.insert(ordered_elements.end(),
1524  ordered_elements_set.begin(),
1525  ordered_elements_set.end());
1526  }
1527 
1528  const unsigned int sys_num = this->number();
1529  const unsigned int nv = this->n_vars();
1530 
1531  // Loop over each non-SCALAR variable and each node, and write out the value.
1532  for (unsigned int var=0; var<nv; var++)
1533  if (this->variable(var).type().family != SCALAR)
1534  {
1535  // First write the node DOF values
1536  for (const auto & node : ordered_nodes)
1537  for (auto comp : make_range(node->n_comp(sys_num,var)))
1538  {
1539  libmesh_assert_not_equal_to (node->dof_number(sys_num, var, comp),
1541 
1542  io_buffer.push_back((*this->solution)(node->dof_number(sys_num, var, comp)));
1543  }
1544 
1545  // Then write the element DOF values
1546  for (const auto & elem : ordered_elements)
1547  for (auto comp : make_range(elem->n_comp(sys_num,var)))
1548  {
1549  libmesh_assert_not_equal_to (elem->dof_number(sys_num, var, comp),
1551 
1552  io_buffer.push_back((*this->solution)(elem->dof_number(sys_num, var, comp)));
1553  }
1554  }
1555 
1556  // Finally, write the SCALAR data on the last processor
1557  for (auto var : make_range(this->n_vars()))
1558  if (this->variable(var).type().family == SCALAR)
1559  {
1560  if (this->processor_id() == (this->n_processors()-1))
1561  {
1562  const DofMap & dof_map = this->get_dof_map();
1563  std::vector<dof_id_type> SCALAR_dofs;
1564  dof_map.SCALAR_dof_indices(SCALAR_dofs, var);
1565 
1566  for (auto dof : SCALAR_dofs)
1567  io_buffer.push_back((*this->solution)(dof));
1568  }
1569  }
1570 
1571  // 9.)
1572  //
1573  // Actually write the reordered solution vector
1574  // for the ith system to disk
1575 
1576  // set up the comment
1577  {
1578  comment = "# System \"";
1579  comment += this->name();
1580  comment += "\" Solution Vector";
1581  }
1582 
1583  io.data (io_buffer, comment);
1584 
1585  // total_written_size += io_buffer.size();
1586 
1587  // Only write additional vectors if wanted
1588  if (write_additional_data)
1589  {
1590  for (auto & [vec_name, vec] : _vectors)
1591  {
1592  io_buffer.clear();
1593  io_buffer.reserve(vec->local_size());
1594 
1595  // Loop over each non-SCALAR variable and each node, and write out the value.
1596  for (unsigned int var=0; var<nv; var++)
1597  if (this->variable(var).type().family != SCALAR)
1598  {
1599  // First write the node DOF values
1600  for (const auto & node : ordered_nodes)
1601  for (auto comp : make_range(node->n_comp(sys_num,var)))
1602  {
1603  libmesh_assert_not_equal_to (node->dof_number(sys_num, var, comp),
1605 
1606  io_buffer.push_back((*vec)(node->dof_number(sys_num, var, comp)));
1607  }
1608 
1609  // Then write the element DOF values
1610  for (const auto & elem : ordered_elements)
1611  for (auto comp : make_range(elem->n_comp(sys_num,var)))
1612  {
1613  libmesh_assert_not_equal_to (elem->dof_number(sys_num, var, comp),
1615 
1616  io_buffer.push_back((*vec)(elem->dof_number(sys_num, var, comp)));
1617  }
1618  }
1619 
1620  // Finally, write the SCALAR data on the last processor
1621  for (auto var : make_range(this->n_vars()))
1622  if (this->variable(var).type().family == SCALAR)
1623  {
1624  if (this->processor_id() == (this->n_processors()-1))
1625  {
1626  const DofMap & dof_map = this->get_dof_map();
1627  std::vector<dof_id_type> SCALAR_dofs;
1628  dof_map.SCALAR_dof_indices(SCALAR_dofs, var);
1629 
1630  for (auto dof : SCALAR_dofs)
1631  io_buffer.push_back((*vec)(dof));
1632  }
1633  }
1634 
1635  // 10.)
1636  //
1637  // Actually write the reordered additional vector
1638  // for this system to disk
1639 
1640  // set up the comment
1641  {
1642  comment = "# System \"";
1643  comment += this->name();
1644  comment += "\" Additional Vector \"";
1645  comment += vec_name;
1646  comment += "\"";
1647  }
1648 
1649  io.data (io_buffer, comment);
1650 
1651  // total_written_size += io_buffer.size();
1652  }
1653  }
1654 
1655  // const Real
1656  // dt = pl.get_elapsed_time(),
1657  // rate = total_written_size*sizeof(Number)/dt;
1658 
1659  // libMesh::err << "Write " << total_written_size << " \"Number\" values\n"
1660  // << " Elapsed time = " << dt << '\n'
1661  // << " Rate = " << rate/1.e6 << "(MB/sec)\n\n";
1662 
1663  // pl.pop("write_parallel_data");
1664 }
FEFamily family
The type of finite element.
Definition: fe_type.h:207
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
const MeshBase & get_mesh() const
Definition: system.h:2277
processor_id_type n_processors() const
unsigned int number() const
Definition: system.h:2269
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
libmesh_assert(ctx)
static const dof_id_type invalid_id
An invalid id to distinguish an uninitialized DofObject.
Definition: dof_object.h:477
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
const std::string & name() const
Definition: system.h:2261
unsigned int n_vars() const
Definition: system.h:2349
processor_id_type processor_id() const
const DofMap & get_dof_map() const
Definition: system.h:2293
const FEType & type() const
Definition: variable.h:140

◆ write_parameter_data_to_files()

void libMesh::RBParametrized::write_parameter_data_to_files ( const std::string &  continuous_param_file_name,
const std::string &  discrete_param_file_name,
const bool  write_binary_data 
)
inherited

Write out the parameter ranges to files.

Definition at line 197 of file rb_parametrized.C.

References libMesh::RBParametrized::write_discrete_parameter_values_to_file(), and libMesh::RBParametrized::write_parameter_ranges_to_file().

Referenced by libMesh::RBSCMEvaluation::legacy_write_offline_data_to_files(), and libMesh::RBEvaluation::legacy_write_offline_data_to_files().

200 {
201  write_parameter_ranges_to_file(continuous_param_file_name, write_binary_data);
202  write_discrete_parameter_values_to_file(discrete_param_file_name, write_binary_data);
203 }
void write_discrete_parameter_values_to_file(const std::string &file_name, const bool write_binary_data)
Write out the discrete parameter values to file.
void write_parameter_ranges_to_file(const std::string &file_name, const bool write_binary)
Write out the parameter ranges to file.

◆ write_serialized_data()

void libMesh::System::write_serialized_data ( Xdr io,
const bool  write_additional_data = true 
) const
inherited

Writes additional data, namely vectors, for this System.

This method may safely be called on a distributed-memory mesh.

This method implements the output of the vectors contained in this System object, embedded in the output of an EquationSystems<T_sys>.

9.) The global solution vector, re-ordered to be node-major (More on this later.)

for each additional vector in the object

10.) The global additional vector, re-ordered to be node-major (More on this later.)

Definition at line 1668 of file system_io.C.

References libMesh::System::_vectors, libMesh::Xdr::comment(), libMesh::System::name(), libMesh::ParallelObject::processor_id(), libMesh::System::solution, and libMesh::System::write_serialized_vector().

Referenced by libMesh::TransientRBConstruction::write_riesz_representors_to_files(), and libMesh::RBConstruction::write_riesz_representors_to_files().

1670 {
1684  parallel_object_only();
1685  std::string comment;
1686 
1687  // PerfLog pl("IO Performance",false);
1688  // pl.push("write_serialized_data");
1689  // std::size_t total_written_size = 0;
1690 
1691  // total_written_size +=
1692  this->write_serialized_vector(io, *this->solution);
1693 
1694  // set up the comment
1695  if (this->processor_id() == 0)
1696  {
1697  comment = "# System \"";
1698  comment += this->name();
1699  comment += "\" Solution Vector";
1700 
1701  io.comment (comment);
1702  }
1703 
1704  // Only write additional vectors if wanted
1705  if (write_additional_data)
1706  {
1707  for (auto & pair : this->_vectors)
1708  {
1709  // total_written_size +=
1710  this->write_serialized_vector(io, *pair.second);
1711 
1712  // set up the comment
1713  if (this->processor_id() == 0)
1714  {
1715  comment = "# System \"";
1716  comment += this->name();
1717  comment += "\" Additional Vector \"";
1718  comment += pair.first;
1719  comment += "\"";
1720  io.comment (comment);
1721  }
1722  }
1723  }
1724 
1725  // const Real
1726  // dt = pl.get_elapsed_time(),
1727  // rate = total_written_size*sizeof(Number)/dt;
1728 
1729  // libMesh::out << "Write " << total_written_size << " \"Number\" values\n"
1730  // << " Elapsed time = " << dt << '\n'
1731  // << " Rate = " << rate/1.e6 << "(MB/sec)\n\n";
1732 
1733  // pl.pop("write_serialized_data");
1734 
1735 
1736 
1737 
1738  // // test the new method
1739  // {
1740  // std::vector<std::string> names;
1741  // std::vector<NumericVector<Number> *> vectors_to_write;
1742 
1743  // names.push_back("Solution Vector");
1744  // vectors_to_write.push_back(this->solution.get());
1745 
1746  // // Only write additional vectors if wanted
1747  // if (write_additional_data)
1748  // {
1749  // std::map<std::string, NumericVector<Number> *>::const_iterator
1750  // pos = _vectors.begin();
1751 
1752  // for (; pos != this->_vectors.end(); ++pos)
1753  // {
1754  // names.push_back("Additional Vector " + pos->first);
1755  // vectors_to_write.push_back(pos->second);
1756  // }
1757  // }
1758 
1759  // total_written_size =
1760  // this->write_serialized_vectors (io, names, vectors_to_write);
1761 
1762  // const Real
1763  // dt2 = pl.get_elapsed_time(),
1764  // rate2 = total_written_size*sizeof(Number)/(dt2-dt);
1765 
1766  // libMesh::out << "Write (new) " << total_written_size << " \"Number\" values\n"
1767  // << " Elapsed time = " << (dt2-dt) << '\n'
1768  // << " Rate = " << rate2/1.e6 << "(MB/sec)\n\n";
1769 
1770  // }
1771 }
std::map< std::string, std::unique_ptr< NumericVector< Number > >, std::less<> > _vectors
Some systems need an arbitrary number of vectors.
Definition: system.h:2164
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1573
const std::string & name() const
Definition: system.h:2261
processor_id_type processor_id() const
dof_id_type write_serialized_vector(Xdr &io, const NumericVector< Number > &vec) const
Writes a vector for this System.
Definition: system_io.C:2118

◆ write_serialized_vectors()

std::size_t libMesh::System::write_serialized_vectors ( Xdr io,
const std::vector< const NumericVector< Number > *> &  vectors 
) const
inherited

Serialize & write a number of identically distributed vectors.

This method allows for optimization for the multiple vector case by only communicating the metadata once.

Definition at line 2259 of file system_io.C.

References libMesh::Xdr::data(), libMesh::System::get_mesh(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::MeshTools::n_elem(), libMesh::MeshBase::n_elem(), n_nodes, libMesh::MeshBase::n_nodes(), libMesh::System::n_vars(), libMesh::ParallelObject::processor_id(), libMesh::SCALAR, libMesh::System::variable(), libMesh::System::write_SCALAR_dofs(), libMesh::System::write_serialized_blocked_dof_objects(), and libMesh::Xdr::writing().

Referenced by libMesh::RBEvaluation::write_out_vectors().

2261 {
2262  parallel_object_only();
2263 
2264  libmesh_assert (io.writing());
2265 
2266  // Cache these - they are not free!
2267  const dof_id_type
2268  n_nodes = this->get_mesh().n_nodes(),
2269  n_elem = this->get_mesh().n_elem();
2270 
2271  std::size_t written_length = 0;
2272 
2273  if (this->processor_id() == 0)
2274  {
2275  unsigned int
2276  n_vec = cast_int<unsigned int>(vectors.size());
2277  dof_id_type
2278  vec_size = vectors.empty() ? 0 : vectors[0]->size();
2279  // Set the number of vectors
2280  io.data(n_vec, "# number of vectors");
2281  // Set the buffer size
2282  io.data(vec_size, "# vector length");
2283  }
2284 
2285  //---------------------------------
2286  // Collect the values for all nodes
2287  written_length +=
2288  this->write_serialized_blocked_dof_objects (vectors,
2289  n_nodes,
2290  this->get_mesh().local_nodes_begin(),
2291  this->get_mesh().local_nodes_end(),
2292  io);
2293 
2294  //------------------------------------
2295  // Collect the values for all elements
2296  written_length +=
2297  this->write_serialized_blocked_dof_objects (vectors,
2298  n_elem,
2299  this->get_mesh().local_elements_begin(),
2300  this->get_mesh().local_elements_end(),
2301  io);
2302 
2303  //-------------------------------------------
2304  // Finally loop over all the SCALAR variables
2305  for (const NumericVector<Number> * vec : vectors)
2306  for (auto var : make_range(this->n_vars()))
2307  if (this->variable(var).type().family == SCALAR)
2308  {
2309  libmesh_assert_not_equal_to (vec, 0);
2310 
2311  written_length +=
2312  this->write_SCALAR_dofs (*vec, var, io);
2313  }
2314 
2315  return written_length;
2316 }
const Variable & variable(unsigned int var) const
Return a constant reference to Variable var.
Definition: system.h:2377
dof_id_type n_elem(const MeshBase::const_element_iterator &begin, const MeshBase::const_element_iterator &end)
Count up the number of elements of a specific type (as defined by an iterator range).
Definition: mesh_tools.C:850
unsigned int write_SCALAR_dofs(const NumericVector< Number > &vec, const unsigned int var, Xdr &io) const
Writes the SCALAR dofs associated with var to the stream io.
Definition: system_io.C:2062
const MeshBase & get_mesh() const
Definition: system.h:2277
const dof_id_type n_nodes
Definition: tecplot_io.C:67
libmesh_assert(ctx)
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:134
unsigned int n_vars() const
Definition: system.h:2349
virtual dof_id_type n_elem() const =0
processor_id_type processor_id() const
template class LIBMESH_EXPORT NumericVector< Number >
virtual dof_id_type n_nodes() const =0
std::size_t write_serialized_blocked_dof_objects(const std::vector< const NumericVector< Number > *> &vecs, const dof_id_type n_objects, const iterator_type begin, const iterator_type end, Xdr &io, const unsigned int var_to_write=libMesh::invalid_uint) const
Writes an output vector to the stream io for a set of DofObjects.
Definition: system_io.C:1776
uint8_t dof_id_type
Definition: id_types.h:67

◆ zero_variable()

void libMesh::System::zero_variable ( NumericVector< Number > &  v,
unsigned int  var_num 
) const
inherited

Zeroes all dofs in v that correspond to variable number var_num.

Definition at line 1616 of file system.C.

References libMesh::System::get_mesh(), mesh, libMesh::System::n_vars(), libMesh::System::number(), and libMesh::NumericVector< T >::set().

1618 {
1619  /* Make sure the call makes sense. */
1620  libmesh_assert_less (var_num, this->n_vars());
1621 
1622  /* Get a reference to the mesh. */
1623  const MeshBase & mesh = this->get_mesh();
1624 
1625  /* Check which system we are. */
1626  const unsigned int sys_num = this->number();
1627 
1628  // Loop over nodes.
1629  for (const auto & node : mesh.local_node_ptr_range())
1630  {
1631  unsigned int n_comp = node->n_comp(sys_num,var_num);
1632  for (unsigned int i=0; i<n_comp; i++)
1633  {
1634  const dof_id_type index = node->dof_number(sys_num,var_num,i);
1635  v.set(index,0.0);
1636  }
1637  }
1638 
1639  // Loop over elements.
1640  for (const auto & elem : mesh.active_local_element_ptr_range())
1641  {
1642  unsigned int n_comp = elem->n_comp(sys_num,var_num);
1643  for (unsigned int i=0; i<n_comp; i++)
1644  {
1645  const dof_id_type index = elem->dof_number(sys_num,var_num,i);
1646  v.set(index,0.0);
1647  }
1648  }
1649 }
MeshBase & mesh
const MeshBase & get_mesh() const
Definition: system.h:2277
unsigned int number() const
Definition: system.h:2269
virtual void set(const numeric_index_type i, const T value)=0
Sets v(i) = value.
unsigned int n_vars() const
Definition: system.h:2349
uint8_t dof_id_type
Definition: id_types.h:67

Member Data Documentation

◆ _communicator

const Parallel::Communicator& libMesh::ParallelObject::_communicator
protectedinherited

◆ _counts [1/2]

ReferenceCounter::Counts libMesh::ReferenceCounter::_counts
staticprotectedinherited

Actually holds the data.

Definition at line 124 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::get_info().

◆ _counts [2/2]

ReferenceCounter::Counts libMesh::ReferenceCounter::_counts
staticprotectedinherited

Actually holds the data.

Definition at line 124 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::get_info().

◆ _enable_print_counter [1/2]

bool libMesh::ReferenceCounter::_enable_print_counter = true
staticprotectedinherited

Flag to control whether reference count information is printed when print_info is called.

Definition at line 143 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().

◆ _enable_print_counter [2/2]

bool libMesh::ReferenceCounter::_enable_print_counter = true
staticprotectedinherited

Flag to control whether reference count information is printed when print_info is called.

Definition at line 143 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().

◆ _mutex [1/2]

Threads::spin_mutex libMesh::ReferenceCounter::_mutex
staticprotectedinherited

Mutual exclusion object to enable thread-safe reference counting.

Definition at line 137 of file reference_counter.h.

◆ _mutex [2/2]

Threads::spin_mutex libMesh::ReferenceCounter::_mutex
staticprotectedinherited

Mutual exclusion object to enable thread-safe reference counting.

Definition at line 137 of file reference_counter.h.

◆ _n_objects [1/2]

Threads::atomic< unsigned int > libMesh::ReferenceCounter::_n_objects
staticprotectedinherited

The number of objects.

Print the reference count information when the number returns to 0.

Definition at line 132 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().

◆ _n_objects [2/2]

Threads::atomic< unsigned int > libMesh::ReferenceCounter::_n_objects
staticprotectedinherited

The number of objects.

Print the reference count information when the number returns to 0.

Definition at line 132 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().

◆ assemble_before_solve

bool libMesh::System::assemble_before_solve
inherited

Flag which tells the system to whether or not to call the user assembly function during each call to solve().

By default, every call to solve() begins with a call to the user assemble, so this flag is true. (For explicit systems, "solving" the system occurs during the assembly step, so this flag is always true for explicit systems.)

You will only want to set this to false if you need direct control over when the system is assembled, and are willing to track the state of its assembly yourself. An example of such a case is an implicit system with multiple right hand sides. In this instance, a single assembly would likely be followed with multiple calls to solve.

The frequency system and Newmark system have their own versions of this flag, called _finished_assemble, which might be able to be replaced with this more general concept.

Definition at line 1527 of file system.h.

Referenced by libMesh::ImplicitSystem::adjoint_solve(), libMesh::ImplicitSystem::disable_cache(), libMesh::System::disable_cache(), main(), libMesh::RBConstruction::RBConstruction(), RBSCMConstruction(), libMesh::ImplicitSystem::sensitivity_solve(), libMesh::EigenSystem::solve(), libMesh::CondensedEigenSystem::solve(), and libMesh::LinearImplicitSystem::solve().

◆ condensed_matrix_A

SparseMatrix<Number>* libMesh::CondensedEigenSystem::condensed_matrix_A
inherited

The (condensed) system matrix for standard eigenvalue problems.

Public access to this member variable will be deprecated in the future! Use get_condensed_matrix_A() instead.

Definition at line 135 of file condensed_eigen_system.h.

Referenced by libMesh::CondensedEigenSystem::get_condensed_matrix_A(), and libMesh::CondensedEigenSystem::solve().

◆ condensed_matrix_B

SparseMatrix<Number>* libMesh::CondensedEigenSystem::condensed_matrix_B
inherited

A second (condensed) system matrix for generalized eigenvalue problems.

Public access to this member variable will be deprecated in the future! Use get_condensed_matrix_B() instead.

Definition at line 143 of file condensed_eigen_system.h.

Referenced by libMesh::CondensedEigenSystem::get_condensed_matrix_B(), and libMesh::CondensedEigenSystem::solve().

◆ current_local_solution

std::unique_ptr<NumericVector<Number> > libMesh::System::current_local_solution
inherited

All the values I need to compute my contribution to the simulation at hand.

Think of this as the current solution with any ghost values needed from other processors. This vector is necessarily larger than the solution vector in the case of a parallel simulation. The update() member is used to synchronize the contents of the solution and current_local_solution vectors.

Definition at line 1585 of file system.h.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::UniformRefinementEstimator::_estimate_error(), alternative_fe_assembly(), HDGProblem::assemble(), libMesh::NonlinearImplicitSystem::assembly(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::System::clear(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::System::current_solution(), DMlibMeshFunction(), DMlibMeshJacobian(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), fe_assembly(), libMesh::System::init_data(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::FEMContext::pre_fe_reinit(), libMesh::RBEIMEvaluation::project_qp_data_map_onto_system(), libMesh::System::re_update(), libMesh::System::reinit(), libMesh::System::restrict_vectors(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), SolidSystem::save_initial_mesh(), libMesh::RBConstruction::set_context_solution_vec(), setup(), MeshFunctionTest::test_subdomain_id_sets(), MeshInputTest::testCopyElementVectorImpl(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), libMesh::TransientRBConstruction::truth_assembly(), libMesh::TransientRBConstruction::truth_solve(), libMesh::System::update(), libMesh::Nemesis_IO_Helper::write_element_values(), and libMesh::Nemesis_IO_Helper::write_nodal_solution().

◆ eigen_solver

std::unique_ptr<EigenSolver<Number> > libMesh::EigenSystem::eigen_solver
inherited

◆ extra_quadrature_order

int libMesh::System::extra_quadrature_order
inherited

A member int that can be employed to indicate increased or reduced quadrature order.

Note
For FEMSystem users, by default, when calling the user-defined residual functions, the FEMSystem will first set up an appropriate FEType::default_quadrature_rule() object for performing the integration. This rule will integrate elements of order up to 2*p+1 exactly (where p is the sum of the base FEType and local p refinement levels), but if additional (or reduced) quadrature accuracy is desired then this extra_quadrature_order (default 0) will be added.

Definition at line 1558 of file system.h.

Referenced by CurlCurlSystem::init_data(), and set_system_parameters().

◆ inner_product_storage_vector

std::unique_ptr<NumericVector<Number> > libMesh::RBConstructionBase< CondensedEigenSystem >::inner_product_storage_vector
protectedinherited

We keep an extra temporary vector that is useful for performing inner products (avoids unnecessary memory allocation/deallocation).

Definition at line 274 of file rb_construction_base.h.

Referenced by Aq_inner_product(), and B_inner_product().

◆ local_non_condensed_dofs_vector

std::vector<dof_id_type> libMesh::CondensedEigenSystem::local_non_condensed_dofs_vector
inherited

Vector storing the local dof indices that will not be condensed.

All dofs that are not in this vector will be eliminated from the system when we perform a solve.

Definition at line 150 of file condensed_eigen_system.h.

Referenced by libMesh::CondensedEigenSystem::get_eigenpair(), libMesh::CondensedEigenSystem::initialize_condensed_dofs(), libMesh::CondensedEigenSystem::n_global_non_condensed_dofs(), and libMesh::CondensedEigenSystem::solve().

◆ matrix_A

SparseMatrix<Number>* libMesh::EigenSystem::matrix_A
inherited

◆ matrix_B

SparseMatrix<Number>* libMesh::EigenSystem::matrix_B
inherited

A second system matrix for generalized eigenvalue problems.

Public access to this member variable will be deprecated in the future! Use get_matrix_B() instead.

Definition at line 321 of file eigen_system.h.

Referenced by libMesh::EigenSystem::add_matrices(), B_inner_product(), libMesh::EigenSystem::clear(), libMesh::EigenSystem::get_matrix_B(), libMesh::EigenSystem::has_matrix_B(), load_matrix_B(), libMesh::EigenSystem::solve(), and libMesh::CondensedEigenSystem::solve().

◆ precond_matrix

SparseMatrix<Number>* libMesh::EigenSystem::precond_matrix
inherited

A preconditioning matrix.

Public access to this member variable will be deprecated in the future! Use get_precond_matrix() instead.

Definition at line 345 of file eigen_system.h.

Referenced by libMesh::EigenSystem::add_matrices(), libMesh::EigenSystem::clear(), libMesh::EigenSystem::get_precond_matrix(), libMesh::EigenSystem::has_precond_matrix(), and libMesh::EigenSystem::solve().

◆ quiet_mode

bool libMesh::RBConstructionBase< CondensedEigenSystem >::quiet_mode
protectedinherited

Flag to indicate whether we print out extra information during the Offline stage.

Definition at line 259 of file rb_construction_base.h.

◆ rb_scm_eval

RBSCMEvaluation* libMesh::RBSCMConstruction::rb_scm_eval
private

◆ RB_system_name

std::string libMesh::RBSCMConstruction::RB_system_name
protected

The name of the associated RB system.

Definition at line 236 of file rb_scm_construction.h.

Referenced by add_scaled_symm_Aq(), load_matrix_B(), perform_SCM_greedy(), and set_RB_system_name().

◆ SCM_training_tolerance

Real libMesh::RBSCMConstruction::SCM_training_tolerance
protected

Tolerance which controls when to terminate the SCM Greedy.

Definition at line 231 of file rb_scm_construction.h.

Referenced by get_SCM_training_tolerance(), perform_SCM_greedy(), process_parameters_file(), and set_SCM_training_tolerance().

◆ serial_training_set

bool libMesh::RBConstructionBase< CondensedEigenSystem >::serial_training_set
protectedinherited

This boolean flag indicates whether or not the training set should be the same on all processors.

By default it is false, but in the case of the Empirical Interpolation Method (RBEIMConstruction), for example, we need the training set to be identical on all processors.

Definition at line 267 of file rb_construction_base.h.

◆ shell_matrix_A

std::unique_ptr<ShellMatrix<Number> > libMesh::EigenSystem::shell_matrix_A
inherited

The system shell matrix for standard eigenvalue problems.

Public access to this member variable will be deprecated in the future! Use get_shell_matrix_A() instead.

Definition at line 329 of file eigen_system.h.

Referenced by libMesh::EigenSystem::add_matrices(), libMesh::EigenSystem::clear(), libMesh::EigenSystem::get_shell_matrix_A(), libMesh::EigenSystem::has_shell_matrix_A(), libMesh::EigenSystem::init_matrices(), libMesh::EigenSystem::reinit(), and libMesh::EigenSystem::solve().

◆ shell_matrix_B

std::unique_ptr<ShellMatrix<Number> > libMesh::EigenSystem::shell_matrix_B
inherited

A second system shell matrix for generalized eigenvalue problems.

Public access to this member variable will be deprecated in the future! Use get_shell_matrix_B() instead.

Definition at line 337 of file eigen_system.h.

Referenced by libMesh::EigenSystem::add_matrices(), libMesh::EigenSystem::clear(), libMesh::EigenSystem::get_shell_matrix_B(), libMesh::EigenSystem::has_shell_matrix_B(), libMesh::EigenSystem::init_matrices(), libMesh::EigenSystem::reinit(), and libMesh::EigenSystem::solve().

◆ shell_precond_matrix

std::unique_ptr<ShellMatrix<Number> > libMesh::EigenSystem::shell_precond_matrix
inherited

◆ solution

std::unique_ptr<NumericVector<Number> > libMesh::System::solution
inherited

Data structure to hold solution values.

Definition at line 1573 of file system.h.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::ExactSolution::_compute_error(), libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::TransientRBConstruction::add_IC_to_RB_space(), libMesh::NewmarkSolver::advance_timestep(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::ContinuationSystem::apply_predictor(), HDGProblem::assemble(), libMesh::TransientRBConstruction::assemble_affine_expansion(), libMesh::FEMSystem::assembly(), libMesh::LinearImplicitSystem::assembly(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::RBConstruction::check_if_zero_truth_solve(), libMesh::System::clear(), libMesh::System::compare(), compute_enriched_soln(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::NewmarkSolver::compute_initial_accel(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), compute_stresses(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::ContinuationSystem::continuation_solve(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::Nemesis_IO::copy_elemental_solution(), libMesh::GMVIO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_nodal_solution(), libMesh::Nemesis_IO::copy_nodal_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::Nemesis_IO::copy_scalar_solution(), DMCreateGlobalVector_libMesh(), DMlibMeshFunction(), DMlibMeshJacobian(), libMesh::UnsteadySolver::du(), libMesh::RBConstruction::enrich_RB_space(), libMesh::PatchRecoveryErrorEstimator::estimate_error(), libMesh::WeightedPatchRecoveryErrorEstimator::estimate_error(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::AdjointResidualErrorEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), evaluate_stability_constant(), libMesh::EigenSystem::get_eigenpair(), libMesh::CondensedEigenSystem::get_eigenpair(), LinearElasticityWithContact::get_least_and_max_gap_function(), libMesh::System::init_data(), libMesh::ContinuationSystem::initialize_tangent(), libMesh::TransientRBConstruction::initialize_truth(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::RBConstruction::load_basis_function(), libMesh::TransientRBConstruction::load_rb_solution(), libMesh::RBConstruction::load_rb_solution(), main(), libMesh::DofMap::max_constraint_error(), libMesh::FEMSystem::mesh_position_get(), libMesh::ErrorVector::plot_error(), libMesh::RBConstruction::print_basis_function_orthogonality(), libMesh::RBEIMEvaluation::project_qp_data_map_onto_system(), libMesh::InterMeshProjection::project_system_vectors(), libMesh::ImplicitSystem::qoi_parameter_hessian(), libMesh::ImplicitSystem::qoi_parameter_hessian_vector_product(), libMesh::System::re_update(), libMesh::System::read_legacy_data(), libMesh::System::read_parallel_data(), libMesh::TransientRBConstruction::read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::System::read_serialized_data(), libMesh::System::reinit(), libMesh::System::restrict_vectors(), libMesh::MemoryHistoryData::retrieve_vectors(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), libMesh::ContinuationSystem::save_current_solution(), libMesh::TransientRBConstruction::set_error_temporal_data(), setup(), WriteVecAndScalar::setupTests(), libMesh::TwostepTimeSolver::solve(), libMesh::NewtonSolver::solve(), libMesh::PetscDiffSolver::solve(), libMesh::FrequencySystem::solve(), libMesh::LinearImplicitSystem::solve(), libMesh::NonlinearImplicitSystem::solve(), libMesh::RBConstruction::solve_for_matrix_and_rhs(), libMesh::ContinuationSystem::solve_tangent(), libMesh::MemoryHistoryData::store_vectors(), ConstraintOperatorTest::test1DCoarseningOperator(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), SystemsTest::testBoundaryProjectCube(), SystemsTest::testDofCouplingWithVarGroups(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), SystemsTest::testPostInitAddVector(), SystemsTest::testProjectCubeWithMeshFunction(), MeshInputTest::testProjectionRegression(), WriteVecAndScalar::testSolution(), libMesh::RBConstruction::train_reduced_basis_with_POD(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::DirectSolutionTransfer::transfer(), libMesh::MeshfreeSolutionTransfer::transfer(), libMesh::BoundaryVolumeSolutionTransfer::transfer_boundary_volume(), libMesh::BoundaryVolumeSolutionTransfer::transfer_volume_boundary(), libMesh::TransientRBConstruction::truth_solve(), libMesh::RBConstruction::truth_solve(), libMesh::System::update(), libMesh::System::update_global_solution(), libMesh::TransientRBConstruction::update_RB_initial_condition_all_N(), libMesh::TransientRBConstruction::update_residual_terms(), libMesh::RBConstruction::update_residual_terms(), libMesh::ContinuationSystem::update_solution(), libMesh::NewmarkSystem::update_u_v_a(), libMesh::DTKAdapter::update_variable_values(), libMesh::RBEIMEvaluation::write_out_projected_basis_functions(), libMesh::System::write_parallel_data(), libMesh::TransientRBConstruction::write_riesz_representors_to_files(), libMesh::RBConstruction::write_riesz_representors_to_files(), and libMesh::System::write_serialized_data().

◆ time

Real libMesh::System::time
inherited

For time-dependent problems, this is the time t at the beginning of the current timestep.

Note
For DifferentiableSystem users: do not access this time during an assembly! Use the DiffContext::time value instead to get correct results.

Definition at line 1595 of file system.h.

Referenced by libMesh::AdaptiveTimeSolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::TwostepTimeSolver::adjoint_solve(), libMesh::AdaptiveTimeSolver::advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::SubProjector::construct_projection(), HeatSystem::element_qoi(), fill_dirichlet_bc(), libMesh::ExactErrorEstimator::find_squared_element_error(), initialize(), libMesh::Euler2Solver::integrate_adjoint_refinement_error_estimate(), libMesh::EulerSolver::integrate_adjoint_refinement_error_estimate(), libMesh::UnsteadySolver::integrate_adjoint_sensitivity(), libMesh::Euler2Solver::integrate_qoi_timestep(), libMesh::EulerSolver::integrate_qoi_timestep(), main(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectVertices::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectEdges::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectSides::operator()(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::ProjectInteriors::operator()(), libMesh::System::reinit_constraints(), libMesh::UnsteadySolver::retrieve_timestep(), and libMesh::TwostepTimeSolver::solve().

◆ use_fixed_solution

bool libMesh::System::use_fixed_solution
inherited

A boolean to be set to true by systems using elem_fixed_solution, for optional use by e.g.

stabilized methods. False by default.

Note
For FEMSystem users, if this variable is set to true, it must be before init_data() is called.

Definition at line 1543 of file system.h.

Referenced by libMesh::EulerSolver::_general_residual(), libMesh::Euler2Solver::_general_residual(), libMesh::SteadySolver::_general_residual(), libMesh::NewmarkSolver::_general_residual(), libMesh::DifferentiableSystem::clear(), libMesh::DiffContext::DiffContext(), and libMesh::FEMContext::pre_fe_reinit().

◆ verbose_mode

bool libMesh::RBParametrized::verbose_mode
inherited

Public boolean to toggle verbose mode.

Definition at line 191 of file rb_parametrized.h.

Referenced by libMesh::RBParametrized::check_if_valid_params().


The documentation for this class was generated from the following files: