libMesh
cell_hex.C
Go to the documentation of this file.
1 // The libMesh Finite Element Library.
2 // Copyright (C) 2002-2024 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
3 
4 // This library is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU Lesser General Public
6 // License as published by the Free Software Foundation; either
7 // version 2.1 of the License, or (at your option) any later version.
8 
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // Lesser General Public License for more details.
13 
14 // You should have received a copy of the GNU Lesser General Public
15 // License along with this library; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 
18 
19 // C++ includes
20 #include <algorithm> // for std::min, std::max
21 
22 // Local includes
23 #include "libmesh/cell_hex.h"
24 #include "libmesh/cell_hex8.h"
25 #include "libmesh/face_quad4.h"
26 #include "libmesh/enum_elem_quality.h"
27 #include "libmesh/tensor_value.h"
28 
29 #include <array>
30 
31 namespace libMesh
32 {
33 
34 
35 
36 // ------------------------------------------------------------
37 // Hex class static member initializations
38 
39 
40 // We need to require C++11...
41 const Real Hex::_master_points[27][3] =
42  {
43  {-1, -1, -1},
44  {1, -1, -1},
45  {1, 1, -1},
46  {-1, 1, -1},
47  {-1, -1, 1},
48  {1, -1, 1},
49  {1, 1, 1},
50  {-1, 1, 1},
51  {0, -1, -1},
52  {1, 0, -1},
53  {0, 1, -1},
54  {-1, 0, -1},
55  {-1, -1, 0},
56  {1, -1, 0},
57  {1, 1, 0},
58  {-1, 1, 0},
59  {0, -1, 1},
60  {1, 0, 1},
61  {0, 1, 1},
62  {-1, 0, 1},
63  {0, 0, -1},
64  {0, -1, 0},
65  {1, 0, 0},
66  {0, 1, 0},
67  {-1, 0, 0},
68  {0, 0, 1}
69  };
70 
71 const unsigned int Hex::edge_sides_map[12][2] =
72  {
73  {0, 1}, // Edge 0
74  {0, 2}, // Edge 1
75  {0, 3}, // Edge 2
76  {0, 4}, // Edge 3
77  {1, 4}, // Edge 4
78  {1, 2}, // Edge 5
79  {2, 3}, // Edge 6
80  {3, 4}, // Edge 7
81  {1, 5}, // Edge 8
82  {2, 5}, // Edge 9
83  {3, 5}, // Edge 10
84  {4, 5} // Edge 11
85  };
86 
87 
88 // ------------------------------------------------------------
89 // Hex class member functions
90 dof_id_type Hex::key (const unsigned int s) const
91 {
92  libmesh_assert_less (s, this->n_sides());
93 
94  return this->compute_key(this->node_id(Hex8::side_nodes_map[s][0]),
95  this->node_id(Hex8::side_nodes_map[s][1]),
96  this->node_id(Hex8::side_nodes_map[s][2]),
97  this->node_id(Hex8::side_nodes_map[s][3]));
98 }
99 
100 
101 
102 dof_id_type Hex::low_order_key (const unsigned int s) const
103 {
104  libmesh_assert_less (s, this->n_sides());
105 
106  return this->compute_key(this->node_id(Hex8::side_nodes_map[s][0]),
107  this->node_id(Hex8::side_nodes_map[s][1]),
108  this->node_id(Hex8::side_nodes_map[s][2]),
109  this->node_id(Hex8::side_nodes_map[s][3]));
110 }
111 
112 
113 
114 unsigned int Hex::local_side_node(unsigned int side,
115  unsigned int side_node) const
116 {
117  libmesh_assert_less (side, this->n_sides());
118  libmesh_assert_less (side_node, Hex8::nodes_per_side);
119 
120  return Hex8::side_nodes_map[side][side_node];
121 }
122 
123 
124 
125 unsigned int Hex::local_edge_node(unsigned int edge,
126  unsigned int edge_node) const
127 {
128  libmesh_assert_less (edge, this->n_edges());
129  libmesh_assert_less (edge_node, Hex8::nodes_per_edge);
130 
131  return Hex8::edge_nodes_map[edge][edge_node];
132 }
133 
134 
135 
136 std::unique_ptr<Elem> Hex::side_ptr (const unsigned int i)
137 {
138  libmesh_assert_less (i, this->n_sides());
139 
140  std::unique_ptr<Elem> face = std::make_unique<Quad4>();
141 
142  for (auto n : face->node_index_range())
143  face->set_node(n) = this->node_ptr(Hex8::side_nodes_map[i][n]);
144 
145  return face;
146 }
147 
148 
149 
150 void Hex::side_ptr (std::unique_ptr<Elem> & side,
151  const unsigned int i)
152 {
153  this->simple_side_ptr<Hex,Hex8>(side, i, QUAD4);
154 }
155 
156 
157 
158 bool Hex::is_child_on_side(const unsigned int c,
159  const unsigned int s) const
160 {
161  libmesh_assert_less (c, this->n_children());
162  libmesh_assert_less (s, this->n_sides());
163 
164  // This array maps the Hex8 node numbering to the Hex8 child
165  // numbering. I.e.
166  // node 6 touches child 7, and
167  // node 7 touches child 6, etc.
168  const unsigned int node_child_map[8] = { 0, 1, 3, 2, 4, 5, 7, 6 };
169 
170  for (unsigned int i = 0; i != 4; ++i)
171  if (node_child_map[Hex8::side_nodes_map[s][i]] == c)
172  return true;
173 
174  return false;
175 }
176 
177 
178 
179 bool Hex::is_edge_on_side(const unsigned int e,
180  const unsigned int s) const
181 {
182  libmesh_assert_less (e, this->n_edges());
183  libmesh_assert_less (s, this->n_sides());
184 
185  return (edge_sides_map[e][0] == s || edge_sides_map[e][1] == s);
186 }
187 
188 
189 
190 std::vector<unsigned int> Hex::sides_on_edge(const unsigned int e) const
191 {
192  libmesh_assert_less(e, this->n_edges());
193 
194  return {edge_sides_map[e][0], edge_sides_map[e][1]};
195 }
196 
197 
198 
199 unsigned int Hex::opposite_side(const unsigned int side_in) const
200 {
201  libmesh_assert_less (side_in, 6);
202  static const unsigned char hex_opposites[6] = {5, 3, 4, 1, 2, 0};
203  return hex_opposites[side_in];
204 }
205 
206 
207 
208 unsigned int Hex::opposite_node(const unsigned int node_in,
209  const unsigned int side_in) const
210 {
211  libmesh_assert_less (node_in, 26);
212  libmesh_assert_less (node_in, this->n_nodes());
213  libmesh_assert_less (side_in, this->n_sides());
214  libmesh_assert(this->is_node_on_side(node_in, side_in));
215 
216  static const unsigned char side05_nodes_map[] =
217  {4, 5, 6, 7, 0, 1, 2, 3, 16, 17, 18, 19, 255, 255, 255, 255, 8, 9, 10, 11, 25, 255, 255, 255, 255, 20};
218  static const unsigned char side13_nodes_map[] =
219  {3, 2, 1, 0, 7, 6, 5, 4, 10, 255, 8, 255, 15, 14, 13, 12, 18, 255, 16, 255, 255, 23, 255, 21, 255, 255};
220  static const unsigned char side24_nodes_map[] =
221  {1, 0, 3, 2, 5, 4, 7, 6, 255, 11, 255, 9, 13, 12, 15, 14, 255, 19, 255, 17, 255, 255, 24, 255, 22, 255};
222 
223  switch (side_in)
224  {
225  case 0:
226  case 5:
227  return side05_nodes_map[node_in];
228  case 1:
229  case 3:
230  return side13_nodes_map[node_in];
231  case 2:
232  case 4:
233  return side24_nodes_map[node_in];
234  default:
235  libmesh_error_msg("Unsupported side_in = " << side_in);
236  }
237 }
238 
239 
240 
241 bool
243 {
244  return (triple_product(this->point(1)-this->point(0),
245  this->point(3)-this->point(0),
246  this->point(4)-this->point(0)) < 0);
247 }
248 
249 
250 
252 {
253  switch (q)
254  {
255 
256 #if LIBMESH_DIM >= 3
257 
261  case DIAGONAL:
262  {
263  // Diagonal between node 0 and node 6
264  const Real d06 = this->length(0,6);
265 
266  // Diagonal between node 3 and node 5
267  const Real d35 = this->length(3,5);
268 
269  // Diagonal between node 1 and node 7
270  const Real d17 = this->length(1,7);
271 
272  // Diagonal between node 2 and node 4
273  const Real d24 = this->length(2,4);
274 
275  // Find the biggest and smallest diagonals
276  const Real min = std::min(d06, std::min(d35, std::min(d17, d24)));
277  const Real max = std::max(d06, std::max(d35, std::max(d17, d24)));
278 
279  libmesh_assert_not_equal_to (max, 0.0);
280 
281  return min / max;
282 
283  break;
284  }
285 
290  case TAPER:
291  {
292 
296  const Real d01 = this->length(0,1);
297  const Real d12 = this->length(1,2);
298  const Real d23 = this->length(2,3);
299  const Real d03 = this->length(0,3);
300  const Real d45 = this->length(4,5);
301  const Real d56 = this->length(5,6);
302  const Real d67 = this->length(6,7);
303  const Real d47 = this->length(4,7);
304  const Real d04 = this->length(0,4);
305  const Real d15 = this->length(1,5);
306  const Real d37 = this->length(3,7);
307  const Real d26 = this->length(2,6);
308 
309  std::vector<Real> edge_ratios(12);
310  // Front
311  edge_ratios[0] = std::min(d01, d45) / std::max(d01, d45);
312  edge_ratios[1] = std::min(d04, d15) / std::max(d04, d15);
313 
314  // Right
315  edge_ratios[2] = std::min(d15, d26) / std::max(d15, d26);
316  edge_ratios[3] = std::min(d12, d56) / std::max(d12, d56);
317 
318  // Back
319  edge_ratios[4] = std::min(d67, d23) / std::max(d67, d23);
320  edge_ratios[5] = std::min(d26, d37) / std::max(d26, d37);
321 
322  // Left
323  edge_ratios[6] = std::min(d04, d37) / std::max(d04, d37);
324  edge_ratios[7] = std::min(d03, d47) / std::max(d03, d47);
325 
326  // Bottom
327  edge_ratios[8] = std::min(d01, d23) / std::max(d01, d23);
328  edge_ratios[9] = std::min(d03, d12) / std::max(d03, d12);
329 
330  // Top
331  edge_ratios[10] = std::min(d45, d67) / std::max(d45, d67);
332  edge_ratios[11] = std::min(d56, d47) / std::max(d56, d47);
333 
334  return *(std::min_element(edge_ratios.begin(), edge_ratios.end())) ;
335 
336  break;
337  }
338 
339 
344  case STRETCH:
345  {
346  const Real sqrt3 = 1.73205080756888;
347 
351  const Real d06 = this->length(0,6);
352  const Real d17 = this->length(1,7);
353  const Real d35 = this->length(3,5);
354  const Real d24 = this->length(2,4);
355  const Real max_diag = std::max(d06, std::max(d17, std::max(d35, d24)));
356 
357  libmesh_assert_not_equal_to ( max_diag, 0.0 );
358 
362  std::vector<Real> edges(12);
363  edges[0] = this->length(0,1);
364  edges[1] = this->length(1,2);
365  edges[2] = this->length(2,3);
366  edges[3] = this->length(0,3);
367  edges[4] = this->length(4,5);
368  edges[5] = this->length(5,6);
369  edges[6] = this->length(6,7);
370  edges[7] = this->length(4,7);
371  edges[8] = this->length(0,4);
372  edges[9] = this->length(1,5);
373  edges[10] = this->length(2,6);
374  edges[11] = this->length(3,7);
375 
376  const Real min_edge = *(std::min_element(edges.begin(), edges.end()));
377  return sqrt3 * min_edge / max_diag ;
378  }
379 
380 
381  case SHAPE:
382  case SKEW:
383  {
384  // From: P. Knupp, "Algebraic mesh quality metrics for
385  // unstructured initial meshes," Finite Elements in Analysis
386  // and Design 39, 2003, p. 217-241, Sections 6.2 and 6.3.
387 
388  // Make local copies of points, we will access these several
389  // times below.
390  const Point
391  x0 = point(0), x1 = point(1), x2 = point(2), x3 = point(3),
392  x4 = point(4), x5 = point(5), x6 = point(6), x7 = point(7);
393 
394  // The columns of the Jacobian matrices are:
395  // \vec{x}_{\xi} = \vec{a1}*eta*zeta + \vec{b1}*eta + \vec{c1}*zeta + \vec{d1}
396  // \vec{x}_{\eta} = \vec{a2}*xi*zeta + \vec{b2}*xi + \vec{c2}*zeta + \vec{d2}
397  // \vec{x}_{\zeta} = \vec{a3}*xi*eta + \vec{b3}*xi + \vec{c3}*eta + \vec{d3}
398  // where the ai, bi, ci, and di are constants defined below.
399  const Point a1 = -x0 + x1 - x2 + x3 + x4 - x5 + x6 - x7;
400  const Point b1 = x0 - x1 + x2 - x3 + x4 - x5 + x6 - x7;
401  const Point c1 = x0 - x1 - x2 + x3 - x4 + x5 + x6 - x7;
402  const Point d1 = -x0 + x1 + x2 - x3 - x4 + x5 + x6 - x7;
403 
404  const Point a2 = a1;
405  const Point b2 = b1;
406  const Point c2 = x0 + x1 - x2 - x3 - x4 - x5 + x6 + x7;
407  const Point d2 = -x0 - x1 + x2 + x3 - x4 - x5 + x6 + x7;
408 
409  const Point a3 = a1;
410  const Point b3 = c1;
411  const Point c3 = c2;
412  const Point d3 = -x0 - x1 - x2 - x3 + x4 + x5 + x6 + x7;
413 
414  // Form the nodal Jacobians. These were computed using a
415  // Python script and the formulas above. Note that we are
416  // actually computing the Jacobian _columns_ and passing them
417  // to the RealTensor constructor which expects _rows_, but
418  // it's OK because we are only interested in determinants and
419  // products which are not affected by taking the transpose.
420  std::array<RealTensor, 8> A =
421  {{
422  RealTensor(d1, d2, d3),
423  RealTensor(d1, b2 + d2, b3 + d3),
424  RealTensor(b1 + d1, b2 + d2, a3 + b3 + c3 + d3),
425  RealTensor(b1 + d1, d2, c3 + d3),
426  RealTensor(c1 + d1, c2 + d2, d3),
427  RealTensor(c1 + d1, a2 + b2 + c2 + d2, b3 + d3),
428  RealTensor(a1 + b1 + c1 + d1, a2 + b2 + c2 + d2, a3 + b3 + c3 + d3),
429  RealTensor(a1 + b1 + c1 + d1, c2 + d2, c3 + d3)
430  }};
431 
432  // Compute Nodal areas, alpha_k = det(A_k).
433  // If any of these are zero or negative, we return zero
434  // (lowest possible value) for the quality, since the formulas
435  // below require positive nodal areas.
436  std::array<Real, 8> alpha;
437  for (unsigned int k=0; k<alpha.size(); ++k)
438  {
439  alpha[k] = A[k].det();
440  if (alpha[k] <= 0.)
441  return 0.;
442  }
443 
444  // Compute metric tensors, T_k = A_k^T * A_k.
445  std::array<RealTensor, 8> T;
446  for (unsigned int k=0; k<T.size(); ++k)
447  T[k] = A[k] * A[k].transpose();
448 
449  // Compute and return the shape metric. These only use the
450  // diagonal entries of the T_k.
451  Real den = 0.;
452  if (q == SHAPE)
453  {
454  for (unsigned int k=0; k<T.size(); ++k)
455  den += T[k].tr() / std::pow(alpha[k], 2./3.);
456  return (den == 0.) ? 0 : (24. / den);
457  }
458  else
459  {
460  for (unsigned int k=0; k<T.size(); ++k)
461  den += std::pow(std::sqrt(T[k](0,0) * T[k](1,1) * T[k](2,2)) / alpha[k], 2./3.);
462  return (den == 0.) ? 0 : (8. / den);
463  }
464  }
465 #endif // LIBMESH_DIM >= 3
466 
471  default:
472  return Elem::quality(q);
473  }
474 }
475 
476 
477 
478 std::pair<Real, Real> Hex::qual_bounds (const ElemQuality q) const
479 {
480  std::pair<Real, Real> bounds;
481 
482  switch (q)
483  {
484 
485  case ASPECT_RATIO:
486  bounds.first = 1.;
487  bounds.second = 4.;
488  break;
489 
490  case SKEW:
491  bounds.first = 0.;
492  bounds.second = 0.5;
493  break;
494 
495  case SHEAR:
496  case SHAPE:
497  bounds.first = 0.3;
498  bounds.second = 1.;
499  break;
500 
501  case CONDITION:
502  bounds.first = 1.;
503  bounds.second = 8.;
504  break;
505 
506  case JACOBIAN:
507  bounds.first = 0.5;
508  bounds.second = 1.;
509  break;
510 
511  case DISTORTION:
512  bounds.first = 0.6;
513  bounds.second = 1.;
514  break;
515 
516  case TAPER:
517  bounds.first = 0.;
518  bounds.second = 0.4;
519  break;
520 
521  case STRETCH:
522  bounds.first = 0.25;
523  bounds.second = 1.;
524  break;
525 
526  case DIAGONAL:
527  bounds.first = 0.65;
528  bounds.second = 1.;
529  break;
530 
531  case SIZE:
532  bounds.first = 0.5;
533  bounds.second = 1.;
534  break;
535 
536  default:
537  libMesh::out << "Warning: Invalid quality measure chosen." << std::endl;
538  bounds.first = -1;
539  bounds.second = -1;
540  }
541 
542  return bounds;
543 }
544 
545 
546 
547 const unsigned short int Hex::_second_order_vertex_child_number[27] =
548  {
549  99,99,99,99,99,99,99,99, // Vertices
550  0,1,2,0,0,1,2,3,4,5,6,5, // Edges
551  0,0,1,2,0,4, // Faces
552  0 // Interior
553  };
554 
555 
556 
557 const unsigned short int Hex::_second_order_vertex_child_index[27] =
558  {
559  99,99,99,99,99,99,99,99, // Vertices
560  1,2,3,3,4,5,6,7,5,6,7,7, // Edges
561  2,5,6,7,7,6, // Faces
562  6 // Interior
563  };
564 
565 
566 const unsigned short int Hex::_second_order_adjacent_vertices[12][2] =
567  {
568  { 0, 1}, // vertices adjacent to node 8
569  { 1, 2}, // vertices adjacent to node 9
570  { 2, 3}, // vertices adjacent to node 10
571  { 0, 3}, // vertices adjacent to node 11
572 
573  { 0, 4}, // vertices adjacent to node 12
574  { 1, 5}, // vertices adjacent to node 13
575  { 2, 6}, // vertices adjacent to node 14
576  { 3, 7}, // vertices adjacent to node 15
577 
578  { 4, 5}, // vertices adjacent to node 16
579  { 5, 6}, // vertices adjacent to node 17
580  { 6, 7}, // vertices adjacent to node 18
581  { 4, 7} // vertices adjacent to node 19
582  };
583 
584 
585 #ifdef LIBMESH_ENABLE_AMR
586 
587 // We number 125 "possible node locations" for a 2x2x2 refinement of
588 // hexes with up to 3x3x3 nodes each
589 const int Hex::_child_node_lookup[8][27] =
590  {
591  // node lookup for child 0 (near node 0)
592  { 0, 2, 12, 10, 50, 52, 62, 60, 1, 7, 11, 5, 25, 27, 37, 35,
593  51, 57, 61, 55, 6, 26, 32, 36, 30, 56, 31},
594 
595  // node lookup for child 1 (near node 1)
596  { 2, 4, 14, 12, 52, 54, 64, 62, 3, 9, 13, 7, 27, 29, 39, 37,
597  53, 59, 63, 57, 8, 28, 34, 38, 32, 58, 33},
598 
599  // node lookup for child 2 (near node 3)
600  { 10, 12, 22, 20, 60, 62, 72, 70, 11, 17, 21, 15, 35, 37, 47, 45,
601  61, 67, 71, 65, 16, 36, 42, 46, 40, 66, 41},
602 
603  // node lookup for child 3 (near node 2)
604  { 12, 14, 24, 22, 62, 64, 74, 72, 13, 19, 23, 17, 37, 39, 49, 47,
605  63, 69, 73, 67, 18, 38, 44, 48, 42, 68, 43},
606 
607  // node lookup for child 4 (near node 4)
608  { 50, 52, 62, 60, 100, 102, 112, 110, 51, 57, 61, 55, 75, 77, 87, 85,
609  101, 107, 111, 105, 56, 76, 82, 86, 80, 106, 81},
610 
611  // node lookup for child 5 (near node 5)
612  { 52, 54, 64, 62, 102, 104, 114, 112, 53, 59, 63, 57, 77, 79, 89, 87,
613  103, 109, 113, 107, 58, 78, 84, 88, 82, 108, 93},
614 
615  // node lookup for child 6 (near node 7)
616  { 60, 62, 72, 70, 110, 112, 122, 120, 61, 67, 71, 65, 85, 87, 97, 95,
617  111, 117, 121, 115, 66, 86, 92, 96, 90, 116, 91},
618 
619  // node lookup for child 7 (near node 6)
620  { 62, 64, 74, 72, 112, 114, 124, 122, 63, 69, 73, 67, 87, 89, 99, 97,
621  113, 119, 123, 117, 68, 88, 94, 98, 92, 118, 103}
622  };
623 
624 #endif // LIBMESH_ENABLE_AMR
625 
626 
627 } // namespace libMesh
virtual unsigned int opposite_side(const unsigned int s) const override final
Definition: cell_hex.C:199
virtual std::vector< unsigned int > sides_on_edge(const unsigned int e) const override final
Definition: cell_hex.C:190
static const Real _master_points[27][3]
Master element node locations.
Definition: cell_hex.h:218
virtual dof_id_type key() const
Definition: elem.C:563
virtual std::pair< Real, Real > qual_bounds(const ElemQuality q) const override
Definition: cell_hex.C:478
virtual bool is_flipped() const override final
Definition: cell_hex.C:242
static const unsigned short int _second_order_adjacent_vertices[12][2]
Matrix that tells which vertices define the location of mid-side (or second-order) nodes...
Definition: cell_hex.h:203
virtual bool is_node_on_side(const unsigned int n, const unsigned int s) const =0
RealTensorValue RealTensor
virtual unsigned int n_children() const override final
Definition: cell_hex.h:93
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
Definition: type_vector.h:53
The libMesh namespace provides an interface to certain functionality in the library.
static const unsigned int side_nodes_map[num_sides][nodes_per_side]
This maps the node of the side to element node numbers.
Definition: cell_hex8.h:174
virtual unsigned int local_edge_node(unsigned int edge, unsigned int edge_node) const override
Definition: cell_hex.C:125
T triple_product(const TypeVector< T > &a, const TypeVector< T > &b, const TypeVector< T > &c)
Definition: type_vector.h:1068
T pow(const T &x)
Definition: utility.h:328
Real length(const unsigned int n1, const unsigned int n2) const
Definition: elem.C:552
virtual bool is_child_on_side(const unsigned int c, const unsigned int s) const override final
Definition: cell_hex.C:158
virtual unsigned int n_nodes() const =0
static const int _child_node_lookup[8][27]
Lookup table from child id, child node id to "possible node location" (a simple dictionary-index in a...
Definition: cell_hex.h:224
static const unsigned int edge_nodes_map[num_edges][nodes_per_edge]
This maps the node of the edge to element node numbers.
Definition: cell_hex8.h:180
libmesh_assert(ctx)
static const int nodes_per_edge
Definition: cell_hex8.h:168
virtual std::unique_ptr< Elem > side_ptr(const unsigned int i) override final
Definition: cell_hex.C:136
ElemQuality
Defines an enum for element quality metrics.
virtual unsigned int n_edges() const override final
Definition: cell_hex.h:83
static const int nodes_per_side
Definition: cell_hex8.h:167
virtual dof_id_type low_order_key(const unsigned int s) const override
Definition: cell_hex.C:102
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual unsigned int n_sides() const override final
Definition: cell_hex.h:73
const Node * node_ptr(const unsigned int i) const
Definition: elem.h:2331
OStreamProxy out
virtual Real quality(const ElemQuality q) const
Definition: elem.C:1582
virtual Real quality(const ElemQuality q) const override
Definition: cell_hex.C:251
static const unsigned short int _second_order_vertex_child_number[27]
Vector that names a child sharing each second order node.
Definition: cell_hex.h:208
static const unsigned short int _second_order_vertex_child_index[27]
Vector that names the child vertex index for each second order node.
Definition: cell_hex.h:213
virtual unsigned int opposite_node(const unsigned int n, const unsigned int s) const override final
Definition: cell_hex.C:208
virtual unsigned int local_side_node(unsigned int side, unsigned int side_node) const override
Definition: cell_hex.C:114
static dof_id_type compute_key(dof_id_type n0)
Definition: elem.h:3131
A Point defines a location in LIBMESH_DIM dimensional Real space.
Definition: point.h:39
dof_id_type node_id(const unsigned int i) const
Definition: elem.h:2299
const Point & point(const unsigned int i) const
Definition: elem.h:2277
uint8_t dof_id_type
Definition: id_types.h:67
virtual bool is_edge_on_side(const unsigned int e, const unsigned int s) const override final
Definition: cell_hex.C:179
static const unsigned int edge_sides_map[12][2]
This maps each edge to the sides that contain said edge.
Definition: cell_hex.h:187